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Abstract 
Spectral unmixing is a key process in identifying the spectral signature 
of materials and quantifying their spatial distribution over an image. 
This paper aims to investigate linear and nonlinear methods used to 
solve spectral unmixing problems, the methods were compared based 
on their prediction accuracy, robustness against noise and 
computational time using laboratory simulated data. Results show that 
the nonlinear methods outperform the linear methods in terms of 
prediction accuracy and robustness against noise but are 
computationally more expensive. 
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INTRODUCTION 
Spectral Unmixing (SU) is the process of identifying spectral signatures of 
materials often referred to as endmembers and also estimates their relative 
abundance to the measured spectra (Keshava and Mustard, 2002). It involves the 
analysis of hyperspectral/multispectral data in different fields of application such 
as remote sensing, planetary science, material science and mineralogy (Dobigeon, 
2014). Spectral unmixing often requires the definition of the mixing model 
underlying the observations as presented in the data. A mixing model describes 
how the endmembers combine to form the mixed spectrum as measured by the 
sensor (Hapke, 1981). Given the mixing model, SU then estimates the inverse of 
the formation process to infer the quantity of interest, specifically the 
endmembers, and abundance from the collected spectra (Dobigeon, 2014).  This 
could be achieved through a radiative transfer model which accurately describes 
the light scattering by the materials in the observed scene by a sensor as shown in 
Figure 1. 

 
 
 
 



Kaduna Journal of Geography         ISSN 26365308            Volume 5 No. 1            Page 2

                       (a)                                                                        (b)
Figure 1: Two mixing models. (a) The linear mixing model assumes a well-
defined checker board mixture of materials, with a single reflection of the 
illuminating solar radiation. (b) Nonlinear mixing models assume a randomly 
distributed, homogeneous mixture of materials, with multiple reflections of the 
illuminating radiation. (Adopted from Hapke, 1981)

A hyperspectral image consists of spatial and spectral dimensions which 
correspond to the different wavelengths at which the scene is observed (Yoann, 
2013). The hyperspectral image is often in the form of reflectance, that is the 
vector of values associated with each pixel is the reflectance vector or spectrum of 
the corresponding surface in the scene.

Figure 2: Concept of HyperspectralImage (Adopted from Gillespie et al., 1990)
This spectrum is composed of different materials such as water, soil, vegetation 
etc which are often referred to as endmembers as shown in Figure 2. An important 
problem in hyperspectral imaging processing is to decompose the mixed pixels 
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into the materials that contribute to the pixel, endmembers and the corresponding 
fractions of the spectral signatures in the pixel. This is often referred to as the 
unmixing problem (Gillespie et al., 1990). 
When the mixing scale formed in the scene is macroscopic and each photon 
reaching the sensor interacted with only one material, then the measured 
spectrum  in the  pixel can be accurately described by the Linear 
Mixing Model (LMM) (Dobigeon, 2014). 
 
Linear Spectral Unmixing Model 
The linear unmixing model was first proposed by (Harold et al., 1996) who made 
the assumption that there is no multiple scattering between different cover types; 
it was believed that each photon interact with a single cover type as shown in 
(Figure 1). Linear unmixing is widely used in the spectral unmixing process. 
When the endmembers and spectral reflectances are known, the linear mixing 
model is then used to estimate their abundances in each pixel and be solved using 
equation 1 (Duran and Petrou, 2004). 
 
 Equation 1. ...................................(1)   
 
Where  is the number of endmembers present in the image,  is the spectral 
signature of the  endmember,  is the abundance of the  material in the 

 pixel and  is an additive noise and modeling error. 
  
Nonlinear Unmixing Method 
Due to the simplicity of the linear mixing model, they have been widely used for 
hyperspectral image analysis. However, several studies have noted that the linear 
mixing model can be inaccuratein particular situations (Bioucas-Dias et al., 2012), 
because they fail to in-cooperate back scatter radiation, in this case, more complex 
models must be adopted to solve the unmixing problem. Nonlinear mixing models 
cope with nonlinear interactions; they capture the nonlinear effects that are mostly 
present in an image (Dobigeon, 2014).   
 
When interactions occur at a microscopic level, it is said that the materials are 
intimately mixed, for example, this scene is an area that is composed of sand or 
mineral mixtures (Figure 1). A model described by (Hapke, 1981) describes the 
interactions suffered by light when it comes to contact with surface a composed of 
particles; they involve meaningful and interpretable quantities that have physical 
significance, however, these models require a nonlinear formulation which is 
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complex and complicates the derivation of the unmixing strategies (Dobigeon, 
2014).   In Hapke (1981), the authors derived an analytical model used to express 
the measured reflectances as a function of parameters intrinsic to the mixtures, 
these include massfraction, density size and single scattering albedo, however, 

experiment because it requires the full information of the geometric position of 
the sensor with respect to the observed samples therefore making the inversion 
process more challenging to implement especially when the spectral signatures of 
the endmembers are unknown (Keshava and Mustard, 2002). 
 
MODELS USED FOR THE COMPARISON 
The models used for the comparisonincluded;Vertex Component Analysis (VCA) 
and Minimum Volume Simplex Analysis (MVSA)for the linear models and the 
Generalised Bilinear Model (GBM) and the Polynomial Post Nonlinear Mixing 
Model (PPNMM) were usedfor the nonlinear model. VCA was chosen because it 
is a model that assumes the presence of at least one pure pixel in an image while 
MVSA does not, in this case, we want to know which model performs best in 
terms of unmixing a hyperspectral data with at least 3 endmembers. The GBM 
was considered because the model addresses multiple scattering effects and 
assumes the presence of multiple photon interaction by introducing additional 
interaction terms to cope with the nonlinear effect while the PPNMM is a flexible 
nonlinear model that detects nonlinearity in an image pixel and relates the 
endmembers on an image by a polynomial. 
 
Vertex Component Analysis (VCA) 
This algorithm is based on the geometry of convex sets; it exploits the fact that 
endmembers occupy the vertices of a simplex (Nascimento & Dias, 2005a). The 
VCA algorithm assumes the presence of spectrally pure pixels in a dataset and 
iteratively projects the data onto the direction orthogonal to the subspace spanned 
by the end members that are already determined (Arthur, 1996). The new 
endmember signature corresponds to the extreme of the projection. The algorithm 
iterates until all endmembers are exhausted (Bioucas-Dias et al., 2012). 
 
Minimum Volume Simplex Analysis (MVSA) 
 This algorithm belongs to the minimum volume class and is able to unmix a 
hyperspectral data set in which the pure pixel assumption is not fulfilled (Li & 
Bioucas-Dias, 2008). MVSA is initialized with an inflated version of the simplex 
provided by the VCA (Nascimento & Dias, 2005b), then MVSA removes the 
positivity hard constraint for the abundance fractions and uses instead a step 
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designed to make the algorithm robust against outliers (Duran & Petrou, 2011). 
On the other hand does not assume the presence of pure pixels in an image, like 
the VCA algorithm, the MVSA algorithm is also unsupervised, it belongs to the 
minimum volume class, and this is able to unmix hyperspectral data set in which 
the pure pixel assumption is not fulfilled (Li &Bioucas-Dias, 2008). MVSA is 
initialized with an inflated version of the simplex provided by VCA (Nascimento 
& Dias, 2005a), then MVSA removes the positivity hard constraint for the 
abundance fractions and uses instead a step designed to make the algorithm robust 
against outliers (Duran & Petrou, 2011). 
 
Generalized Bilinear Mixing Models (GBMM) 
This methodaccounts for the presence of multiple photon interactions by 
introducing additional interaction terms in the linear mixing model as detailed in 
equation 2(Somers et al., 2009). The bilinear model considers second order 
interactions between endmembers  
such that the observed mixed pixel  can be written as  
Equation 2 

 
Where  is the Hadamard (term by term) product operation. GBMM reduces the 
additivity constraints imposed on the abundances by the linear mixing model. The 
Generalized Bilinear model, unlike the other family of bilinear mixing models 
such as the Nascimento and Fan bilinear models, assumes that the contribution of 
the interaction term  is proportional to the fractions of the involved 
components with amplitude .  The additional parameter  introduced in 
the GBMM is to obtain a more flexible model as compared to the Nascimento and 
Fan models. The GBMM can be performed using the Bayesian algorithm or the 
least square methods to estimate the unknown parameters (Altmann et al., 2011;, 
Altmann et al., 2012). 
 
Polynomial Post Nonlinear Mixing Model (PPNMM) 
This model assumes that the reflectance of an image isa nonlinear function of pure 
spectral components contaminated by additive noise; the nonlinear functions are 
often approximated using a polynomial function leading to a polynomial post-
nonlinear mixing model as detailed in equation 3 (Duran & Petrou, 2011). 
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The model involves linear and quadratic functions of the abundances. In this case, 
the L-spectrum Y= [ ] of a mixed pixel is defined as a nonlinear 
transformation g of a linear mixture of R spectra  contaminated by additive 
noise as shown in equation 3. 
Equation 3 

 
where  is the spectrum of the  material in the scene,   its corresponding 
proportion, R is the number of endmembers contained in the image and g is an 
appropriate nonlinear function. Another motivation for the PPNMM is the 
Weierstrass approximation theorem which states that every continuous function 
defined on an interval can be uniformly approximated by a polynomial with any 
desired precision (Altmann, et al., 2011). 
All four methods were compared on synthetic data based on performance 
concerning the quality of the unmixing method and computational time. The 
quality of the unmixing method for synthetic images can be measured by 
comparing the estimated and the actual abundances by using the Root Mean 
Square Error (RMSE) (Altmann et al., 2012) thus the lower the RMSE the better 
the result. 
 
DATA DESCRIPTION 
The simulated data used for the comparison was obtainedfrom (Li & Bioucas-
Dias, 2008). The data has a size n = 10000 pixels and 3 endmembers (Carnallite, 
Ammonioalunite and Biotite) as shown in Figures 3, 4 and 5, the dataset was 
generated according to the linear observation model, the abundance fractions are 
Dirichlet distributed with parameters µ = 1 for i = 1,...p, the spectral signatures of 
the endmembers are mineral reflectance with 224 bands obtained from the ENVI 
spectral library. Figure 3, 4 and 5 shows the spectral signatures of the true and 
estimated signatures. For the nonlinear methods, the same data was then generated 
with an abundance vector of  = 0.3,  = 0.6 and = 0.1, a nonlinearity 
coefficient was uniformly generated in the set [0,1], the PPNMM parameter p = 1 
was generated uniformly in the set [-0.3, 0.3], the image was corrupted with 
Random Gaussian noise of variance = 2.8 * (10-3) which is equivalent to a 
Signal to Noise Ratio (SNR) 30dB. Simulation was conducted on the data with 
different levels of Signal to Noise Ratio ranging between (SNR) 10dB and (SNR) 
50dB. This is to ascertain the robustness of the methods with regard to the high 
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signal-to-noise ratio, each result is based on 100 runs.  The result of the unmixing 
based on RMSE of the four methods is presented in Table 1 
 
 
 

 
Figure 3 Spectral reflectance of Ammonialunite endmember 
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Figure 4 Spectral reflectance of Biotite endmember 
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Figure 5 Spectral reflectance of Carnalite endmember 
 
SIMULATION RESULTS 
Table 1shows the comparison of the four methods on simulated data showing the 
Root mean square error (RMSE) and Computational Time (C.T) in seconds for 
the four algorithms with different Signal to Noise Ratio (SNR) 
 
Table 1:Comparison of the four spectral unmixing methods on simulated 
data 

Source: (Author 2023) 
 
 

ALGORITHM SNR=10dB C.T 
(sec) 

SNR=30dB C.T 
(sec) 

SNR=50dB C.T 
(sec) 

VCA 0.1933 0.110 0.0952 0.120 0.0808 0.110 
MVSA 0.1804 0.550 0.0096 0.500 0.0028 0.990 
GBM 3.1126(*10-2) 1.678 2.7233(*10-2) 1.431 2.500(*10-

2) 
1.130 

PPMM 4.333(*10-2) 1.254  3.706(*10-2) 1.101 3.005(*10-

2) 
1.100 
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DISCUSSION 
Two models each of linear and nonlinear methods were compared based on the 
quality of the unmixing model on synthetic data and computational time. The 
simulation result was conducted on an LG desktop with processor: intel (R) core 
TM2 Duo CPU 3.00 GHZ. Results of the experiment reveal that the nonlinear 
methods outperform the linear models with lower root mean square error even in 
the presence of a high signal-to-noise ratio as shown in (Table 1) but in turn are 
computationally expensive when compared with the linear models, this could be 
because the nonlinear models detect nonlinearity in a data and also account for 
backscatter radiation. However the linear models performed better with a low 
signal-to-noise ratio which shows a similar result (Duran & Petrou, 2011), 
therefore this result can further be expanded into hybridization between the linear 
and nonlinear models with regards to signal-to-noise ratio.  
 
CONCLUSION 
From the results obtained, it has been demonstrated thatthe nonlinear models are 
better in spectral unmixing of hyperspectral data with a high Signal to Noise Ratio 
and the linear models are better when the Signal to Noise Ratio is lower at a 
certain ratio. This will be investigated by conducting a hybridization of the two 
models. 
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