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ABSTRACT

Rapid urbanization in semi-arid Africa often triggers deforestation, raising concerns about its
impact on urban microclimates and the intensification of the Urban Heat Island (UHI) effect. This
study provides a rigorous 20-year geospatial analysis of the relationship between deforestation
and Land Surface Temperature (LST) in Katsina Metropolis, Nigeria, a rapidly growing city in the
semi-arid Sudan Savanna. Using Landsat satellite imagery (2002, 2012, 2022), we quantified
vegetation cover change via the Normalized Difference Vegetation Index (NDVI) and retrieved LST
using the mono-window algorithm. Our findings reveal a significant degradation of dense
vegetation, which declined by 23.1% (a loss of 5.51 km?), while non-vegetated areas expanded by
59.6% (a gain of 17.13 km?). This land cover transformation was accompanied by a pronounced
rise in LST, with the mean temperature increasing by 2.5°C and the minimum temperature rising
sharply by 5.6°C, indicating an intensified and persistent UHI effect. Critically, regression analysis
demonstrated a strong and strengthening negative relationship between NDVI and LST, with the
coefficient of determination (R?) increasing to 0.81 by 2022. This confirms that vegetation loss is
the dominant driver of urban warming in this semi-arid setting. The study concludes that
unchecked urban expansion at the expense of green spaces poses a significant environmental
threat, and it underscores the urgent need for integrated urban greening strategies as a primary

Submitted 12 October 2025
Accepted 20 November 2025
Published 24 November 2025

GUEST EDITOR
A.M. Ahmed

KEYWORDS

Urban Heat Island; Land
Surface Temperature;
Deforestation; NDVI; Semi-
Arid Africa; Katsina
Metropolis

component of climate-resilient planning in semi-arid African cities.

1 Introduction

The 21st century is characterized by rapid urbanization, a
global trend with profound environmental consequences,
particularly in the Global South (Kookana et al., 2020). A
critical yet often overlooked impact of this urban
expansion is the alteration of local and regional climates,
primarily through the modification of land surface
properties (Yu et al., 2024). The conversion of natural
landscapes, such as forests and grasslands, to impervious
surfaces like asphalt and concrete, fundamentally
disrupts the surface energy balance. This process is a key
driver of the Urban Heat Island (UHI) effect, a well-
established phenomenon where urban areas experience
significantly warmer temperatures than their rural
surroundings (Oke, 1982; Manoli et al., 2019). The UHI
effect exacerbates energy consumption, elevates pollutant
concentrations, and, most critically, poses severe risks to
human health and well-being through increased heat
stress (He et al., 2021).

In semi-arid regions of Africa, these challenges are
intensified by climatic preconditions and anthropogenic
pressures (Serdeczny et al.,, 2017). Cities in these zones
already face high baseline temperatures and water
scarcity, making them exceptionally vulnerable to
additional warming. A primary anthropogenic pressure

driving this warming is deforestation, defined as the
permanent conversion of forested lands to non-forest uses
according to the Food and Agriculture Organization
(FAO, 2020). In the African context, deforestation is
frequently driven by agricultural expansion, uncontrolled
urbanization, and a heavy reliance on biomass for energy,
leading to the loss of the critical ecosystem services that
vegetation provides for microclimate regulation (Hein et
al., 2018). Vegetation cools the environment through
shade and evapotranspiration, and its removal leads to
increased solar radiation absorption and a consequent rise
in Land Surface Temperature (LST) (Wang et al., 2024).
LST, the radiative skin temperature of the Earth's surface,
is a more direct indicator of surface energy balance and
UHI intensity than near-surface air temperature
(Chakraborty & Lee, 2019; Zhou et al., 2019).

The situation in Nigeria, Africa's most populous nation, is
particularly alarming. The country has one of the highest
deforestation rates globally, with a loss of approximately
3.7% of its primary forest between 2002 and 2020 (Global
Forest Watch, 2023). In Northern Nigeria's semi-arid
Sudan Savanna belt, this trend is amplified by high
population growth and pervasive dependence on
fuelwood, placing immense pressure on remaining
vegetation covers (Abaje et al., 2015). Katsina Metropolis,
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the political and economic hub of Katsina State,
epitomizes this crisis. This trend of land cover
transformation is persistent, as confirmed by a recent
state-wide analysis, which documented ongoing changes
driven by infrastructural development to meet the needs
of a growing population (Gandapa et al, 2023).
Furthermore, Mmaduabuchi et al. (2020) reported a
decadal vegetation loss of 19.3 km? in Katsina State,
attributing it to agricultural and settlement expansion.
This rapid land use/land cover (LULC) change is
expected to have a significant impact on the city's thermal
comprehensive, long-term
spatiotemporal analysis specifically linking deforestation

environment, yet a
to LST dynamics in Katsina Metropolis remains limited.

Remote sensing technology has revolutionized the
monitoring of environmental change, providing
synoptic, repetitive, and cost-effective data for analyzing
LULC and LST dynamics over time (Manoli et al., 2019).
The Normalized Difference Vegetation Index (NDVI),
derived from the red and near-infrared bands of satellite
sensors like Landsat, has become a standard tool for
quantifying vegetation density and health (Tucker, 1979).
Declining NDVI values are a reliable proxy for
deforestation and vegetation stress, enabling the tracking
of green cover loss across urban landscapes (Huang et al.,
2021).

Concurrently, thermal infrared data from the same
satellite platforms allow for the retrieval of LST,
providing a direct measurement of surface heating, as
facilitated by the use of pre-processed Landsat Collection
2 Level-2 products (USGS, 2021). The inverse relationship
between NDVI and LST is well-established in urban
climatology; as vegetation cover decreases (lower NDVI),
the cooling effects of shade and evapotranspiration
diminish, leading to elevated LST. This relationship has
been consistently demonstrated in diverse geographical
contexts, from global-scale analyses (Chakraborty & Lee,
2019) to regional studies in semi-arid Africa (Isioye et al.,
2020).

However, many existing studies in Nigeria have
focused on larger metropolitan areas or have not
employed the latest, atmospherically corrected Landsat
Collection 2 data, which offers improved accuracy for
time-series analysis (USGS, 2021). There is a critical need
for localized, high-resolution studies in rapidly growing
secondary cities like Katsina Metropolis, where the pace
of environmental change is swift and the impacts on
livability are immediate. Such studies are essential for
generating city-specific evidence to guide sustainable
urban planning and climate adaptation strategies.

To bridge this gap, this study conducts a rigorous 20-
year (2002-2022) geospatial analysis to quantify the
spatiotemporal extent of deforestation using NDVI,
examine the concomitant changes in Land Surface

Temperature (LST), and assess the statistical relationship
between vegetation loss and surface warming in Katsina
Metropolis. By quantifying this nexus, the study provides
critical the
consequences of urban growth, which is a prerequisite for
promoting sustainable and climate-resilient urban
development in semi-arid Africa.

empirical evidence on environmental

2 Materials and methods

2.1 Study area

Katsina Metropolis (Fig. 1) is the capital of Katsina State,
Nigeria, and is situated in the semi-arid northwestern part
of the country. It is located within latitudes 12° 55' 30" N
and 13°4' 30" N and longitudes 7° 33' 0" E and 7° 40" 30" E,
covering a land area of approximately 142 km? (Ibrahim &
Halliru, 2022). The city lies within the Sudan Savanna
ecological zone, characterized by a tropical wet and dry
climate (Koppen Aw) with a distinct seasonal pattern. The
region experiences a single rainy season from June to
September, with an average annual rainfall of about 780
mm, and a prolonged dry season from October to May (K.
Abubakar et al., 2024).

Daytime temperatures are consistently high, often
ranging from 29°C to 38°C, and can exceed 40°C during
the pre-rainy months (March-May). The metropolis serves
as the administrative and commercial hub of the state,
experiencing rapid population growth and urban
expansion, which has accelerated land use changes and
placed significant pressure on the local vegetation cover
(Ibrahim & Halliru, 2022; Ahmad et al., 2023).

2.2 Data Sources and Pre-processing

This study utilized multi-temporal satellite imagery from
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and
Landsat 8 Operational Land Imager/Thermal Infrared
Sensor (OLI/TIRS). To ensure consistency in the time
series analysis and minimize the influence of seasonal
phenology, all images were acquired during the peak of
the dry season (January-February) when vegetation is
least lush and cloud cover is minimal. Specifically, the
scenes for February 13, 2002 (Landsat 7), January 24, 2012
(Landsat 7), and February 12, 2022 (Landsat 8) were
downloaded from the United States Geological Survey
(USGS) Earth portal
(https://earthexplorer.usgs.gov/).

A significant strength of this analysis is the use of
Landsat Collection 2 Level-2 products. These datasets are
pre-processed to provide surface reflectance (SR) and
surface temperature (ST) values, which are derived using
advanced algorithms that account for atmospheric
conditions, thereby enhancing the inter-comparability of
data across different years and sensors (USGS, 2021). The
specifications of the data used are summarized in Table 1.

Explorer
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Figure 1:

Table 1: Specifications of Landsat Satellite Data Used

Parameter Landsat 7 ETM+ Landsat 8
(2002, 2012) OLI/TIRS
(2022)
Sensor ETM+ OLI & TIRS
Data Level Collection 2 Collection 2
Level-2 Level-2
Spatial 30 m 30 m
Resolution
(SR)
Spatial 60 m (resampled 100m
Resolution to 30 m) (resampled to
(ST) 30 m)
Bands for Red: Band 3, NIR: Red: Band 4,
NDVI Band 4 NIR: Band 5
Band for LST Thermal: Band 6  Thermal: Band
10

2.3 Data Analysis

Analysis of Vegetation Cover (NDVI)

The Normalized Difference Vegetation Index (NDVI) was
calculated to assess vegetation density and its changes
over time. NDVIis computed using the standard formula
(Huang et al., 2021):

NIR—Red
NIR+Red

NDVI = (1)

For Landsat 7, the Red and Near-Infrared (NIR) bands are
Band 3 and Band 4, respectively. For Landsat 8, they are

7.620 7.650 7.680 7.710

Map of the study area showing the location and boundary of Katsina Metropolis, Nigeria, within its regional context.

Band 4 and Band 5. The calculation was performed using
the Raster Calculator tool in ArcGIS 10.8. The resulting
NDVI values range from -1 to +1, where higher values
indicate denser and healthier vegetation, values near zero
represent bare soil, and negative values typically
correspond to water bodies (Huang et al., 2021). The NDVI
rasters for each year were then clipped to the boundary of
Katsina Metropolis. To quantify changes, the NDVI
images were classified into three land cover classes based
on established thresholds for semi-arid regions (Dey et al.,
2021): non-vegetated (-1 to 0.1), sparse vegetation (0.1 to
0.25), and Vegetated (0.25 to 1), and Vegetated (0.25 to 1).
The area in square kilometres for each class was calculated
for each epoch (2002, 2012, 2022).

Retrieval of Land Surface Temperature (LST)

Land Surface Temperature (LST) was derived from the
thermal infrared bands of the Landsat Collection 2 Level-
2 data. The retrieval process leverages the principle that
the intensity of thermal radiation emitted by the Earth's
surface is a function of its temperature, as described by
Planck's law. While the Collection 2 data provides surface
temperature values, the raw data from the thermal bands
are provided as Digital Numbers (DNs). These DNs were
converted to top-of-atmosphere (TOA) spectral radiance
and subsequently to brightness temperature in Kelvin,
using the scaling parameters provided in the metadata file
(MTL.txt) for each scene (USGS, 2021). This step is crucial
for standardizing the data across different sensors and
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acquisition dates.

The following formula was applied uniformly across all
scenes using the Raster Calculator tool in ArcGIS 10.8 to
convert the DN values to Kelvin:

LST (Kelvin) = (DN X Scale_Factor) + Add_Offset (2)
Where:
e DNiis the pixel value from the thermal band (Band
6 for Landsat 7; Band 10 for Landsat 8).
e Scale_Factor is a multiplicative rescaling factor
(0.00341802 for both sensors in this collection).
e Add_Offset is an additive rescaling factor (149.0
for both sensors in this collection).

It is important to note that this brightness temperature
represents the temperature of a blackbody emitting the
same radiance and does not account for the land surface's
emissivity (¢). However, the use of Landsat Collection 2
Level-2 products, which are generated using advanced
algorithms, implies that atmospheric corrections and
emissivity adjustments have been applied to derive a
more physically accurate surface temperature, as
recommended by the USGS (2021) and supported by
recent methodological reviews (Avdan & Jovanovska,
2016; Wang et al., 2024).

The resulting values were in Kelvin. To convert to
degrees Celsius (°C), the following standard conversion
was applied:

LST (°C) = LST (Kelvin) — 273.15 (3)

This two-step calculation, directly utilizing the scene-
specific scaling parameters, ensures a precise and
physically robust retrieval of LST, accounting for the
radiometric calibration of each sensor. The final LST
rasters for each year, now in degrees Celsius, were
clipped to the study area boundary for subsequent
analysis.

Regression Analysis between NDVI and LST

To quantitatively assess the influence of vegetation cover
on surface temperature, a simple linear regression
analysis was performed, with Land Surface Temperature
(LST) as the dependent variable and the Normalized
Difference Vegetation Index (NDVI) as the independent
variable. The regression model is expressed as:

LST = Bo + B1(NDVI) + ¢ 4)
where [3 is the intercept, (3; is the slope coefficient, and ¢
is the error term.

A systematic sampling approach was employed to
avoid spatial autocorrelation bias (Chakraborty & Lee,
2019). A fishnet of 30 by 30 grid cells (total 900 points) was

created over the study area. The "Extract Multi Values to
Points" in ArcGIS was used to extract the
corresponding NDVI and LST values for each point in the
fishnet for each of the three years. The extracted data were
then exported to statistical software, where the linear
regression model was fitted.

tool

The strength of the relationship was quantified using the
coefficient of determination (R?), which indicates the
proportion of variance in LST explained by NDVI. The
slope of the regression line ((3;) was also examined to
confirm the expected negative relationship.

3 Resulis

3.1 Spatiotemporal Dynamics of Vegetation Cover (2002-
2022)

The analysis of the Normalized Difference Vegetation
Index (NDVI) reveals a significant decline in vegetation
cover in Katsina Metropolis over the two-decade study
period. The spatial distribution of NDVI for the years
2002, 2012, and 2022 is presented in Fig. 2, while the
quantitative changes in vegetation cover classes are
summarized in Table 2.

Table 2: Areal Extent (km?2) of NDVI-based Land Cover Classes
in Katsina Metropolis

NDVI Class 2002 2012 2022  NetChange
(2002-
2022) (km?)

Non- 28.72 3438 4585 +17.13

vegetated

Sparse 9230 89.88 80.61 -11.69

Vegetation

Vegetated 2387 2055 1836 -551

In 2002, the landscape was characterized by a more
extensive distribution of vegetated areas, particularly in
the periphery. The NDVI values ranged from -0.027 to
0.352, with a mean of 0.144. The classified NDVI map (Fig.
2a) shows that Dense Vegetation covered 23.87 km? (16.8%
of the study area), while non-vegetated areas accounted
for 28.72 km? (20.2%).

By 2012, a clear reduction in vegetation density was
observed. The maximum NDVI value decreased to 0.337,
and the spatial extent of the Dense Vegetation class
contracted to 20.55 km? (14.5%). Concurrently, non-
vegetated areas expanded to 34.38 km? (24.2%), indicating
a conversion of green spaces to built-up or bare land. The
trend of vegetation loss continued through 2022. The
vegetated class further diminished to 18.36 km? (12.9%),
representing a net loss of 5.51 km? over the 20 years. In
contrast, non-vegetated areas expanded dramatically to
45.85 km? (32.3%), a net increase of 17.13 km? since 2002.
This signifies a substantial transformation of the urban
landscape, with a clear shift from vegetated to non-
vegetated land cover.
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Figure 2: NDVI Class Map a) 2002, b) 2012, and c) 2022

Temporal Trends in Land Surface Temperature (LST)

The retrieval of Land Surface Temperature (LST) shows a
corresponding warming trend across Katsina Metropolis
from 2002 to 2022 (Fig. 3). The statistical summary of LST
for the three epochs is provided in Table 3.

Table 3: Statistical Summary of NDVI and LST in
Katsina Metropolis (2002-2022)

Year NDVI Statistics LST Statistics
Min Max Mean Min Max Mean
2002 -0.03 0.352 0.144 28.22 36.47 34.08
2012 -0.09 0.337 0.154 31.85 40.35 38.31
2022 -0.03 0.329 0.158 33.83 39.45 36.58
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In 2002, the LST ranged from 28.22°C to 36.47°C, with a
mean of 34.08°C. The spatial pattern showed more
localized and less intense heat islands. A significant
intensification of surface heating was evident in 2012. The
minimum LST rose to 31.85°C, and the maximum LST
peaked at 40.35°C. The mean LST increased sharply to
38.31°C, reflecting a substantial warming of 4.23°C
compared to the 2002 baseline.

By 2022, while the maximum LST (39.45°C) was slightly
lower than in 2012, the baseline temperatures were
consistently higher. The minimum LST in 2022 was
33.83°C, which is 5.61°C warmer than the 2002 minimum.
The mean LST for 2022 was 36.58°C, indicating that the
metropolis retained a significantly warmer thermal
regime compared to the start of the study period.
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Figure 3: LST Map for a) 2002, b) 2012, and c) 2022

Relationship between NDVI and LST

The regression analysis demonstrates a strong,
persistent negative relationship between NDVI and LST
throughout the study period. The scatter plots and
regression statistics for 2002, 2012, and 2022 are presented
in Fig. 4.

In 2002, the regression analysis revealed a strong

TATCE | TAACT | TS0 | 70T | 70T | ARG | 7G0T | AG0T | AT

c) 2022

negative relationship, with the NDVI variable being a
highly significant predictor of LST (R?=0.7705), indicating
that 77% of the variability in LST could be explained by
variations in NDVI. This strong inverse relationship was
maintained in 2012, with a similarly high coefficient of
determination (R? = 0.7597).

By 2022, the strength of the relationship increased
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further, yielding the strongest correlation of the study
period (R? = 0.8143). This signifies that over 81% of the
variation in land surface temperature was attributable to
The
consistently high R? values across all three epochs

the density and health of vegetation cover.

robustly confirm that vegetation loss is a primary driver

of land surface temperature increase in Katsina
Metropolis.
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Figure 4: The Negative Relationship Between NDVI and LST in a) 2002, b) 2012, and c) 2022

4 Discussion

This study provides a robust, quantitative assessment of
the spatiotemporal nexus between deforestation and land
surface temperature (LST) rise in Katsina Metropolis, a
rapidly urbanizing city in semi-arid Nigeria. Our findings
confirm a significant transformation of the wurban
landscape over 20 years, characterized by extensive
vegetation loss and a corresponding intensification of the
urban thermal environment, with a consistently strong
negative correlation between these two variables.

4.1 Escalating Vegetation Loss and Urban Expansion
The observed decline in dense vegetation cover, from
23.87 km? in 2002 to 18.36 km? in 2022, coupled with the
dramatic expansion of non-vegetated areas by 17.13 km?,
underscores a rapid process of urbanization at the direct
expense of green spaces. This trend aligns with the
broader pattern of rapid urbanization in West Africa,
where population growth often outpaces effective land-
use planning (United Nations, 2019; Gandapa et al., 2023).
The specific drivers in Katsina, as indicated by local
studies, include high demand for fuelwood, agricultural
expansion on the urban fringes, and direct land
conversion for housing and infrastructure (Ladan, 2014;
Ahmad et al,, 2023). The slight increase in mean NDVI
from 2002 to 2022 (Table 3) likely reflects the growth of
drought-resistant shrubs or small-scale regrowth in
interstitial areas, but this does not offset the critical loss
of dense, mature vegetation and its associated ecosystem
services. This net loss of vegetative cover is the primary
catalyst for the altered surface energy balance observed
in this study.

4.2 Intensification of the Urban Heat Island (UHI) Effect
The significant rise in land surface temperature,

particularly the 4.23°C increase in mean LST from 2002 to
2012 and the consistently elevated baseline in 2022,
provides clear evidence of an intensifying Urban Heat
Island (UHI) effect. The replacement of natural, vegetated
land with impervious surfaces like asphalt, concrete, and
bare soil reduces albedo (reflectivity) and diminishes
cooling through evapotranspiration (Manoli et al., 2019).
This shifts the surface energy balance from latent heat flux
(cooling) to sensible heat flux (warming), leading to the
higher LST values we have documented (Chakraborty &
Lee, 2019). The finding that the minimum LST increased
more sharply (by 5.61°C) than the maximum LST
highlights a critical aspect of UHI intensification: built-up
areas not only heat up more during the day but also retain
heat more effectively throughout the night, offering less
2019). This
pattern of warming is consistent with studies in other
semi-arid cities, such as those in Northern Nigeria, where
Isioye et al. (2020) also reported a strong and growing UHI
effect linked to land cover changes.

respite from thermal stress (Manoli et al.,

4.3 The Robust Nexus between Deforestation and
Warming

The core finding of this research is the persistent and
strong negative relationship between NDVI and LST, with
the coefficient of determination (R?) strengthening to
0.8143 by 2022. This signifies that over 81% of the spatial
variability in surface temperature can be explained by the
presence or absence of vegetation. This result is consistent
with a growing body of regional literature from semi-arid
Nigerian cities, which consistently identifies vegetation
loss as a primary driver of urban warming.

For instance, a recent study in Kaduna Metropolis,
located within the same Sudan Savanna ecological zone,
also demonstrated a strong inverse correlation between



MODIS-derived NDVI and LST (Abubakar et al., 2024).
Similarly, research in the Bwari Area Council of Abuja
confirmed that significant vegetation loss was directly
linked to increased land surface temperatures (Ekanem &
Bukuromo, 2025). Our study from Katsina Metropolis
empirically consolidates these findings, confirming that
the nexus between deforestation and rising LST is a
dominant and widespread environmental challenge
across the semi-arid cities of Northern Nigeria.

4.4 Implications for Urban Planning and Climate
Resilience

The synergistic trends of deforestation and rising LST
pose a direct threat to the livability and public health of
Katsina Metropolis. Elevated LSTs exacerbate heat stress
for residents, increase energy demand for cooling, and
can worsen air pollution levels (He et al., 2021). In a
region already facing water scarcity and high baseline
temperatures, these effects disproportionately impact
vulnerable populations. Therefore, urban planning must
prioritize the conservation of existing green spaces and
the strategic integration of new ones.

The LST and NDVI maps generated in this study can
serve as direct tools for planners, identifying "hotspots"
that should be prioritized for targeted interventions such
as the creation of urban parks, green corridors, and the
promotion of "cool" building materials (Mushore et al.,
2017) Policies aimed at providing alternative energy
sources to reduce fuelwood dependence are also crucial
to address a root cause of deforestation.

§ Conclusion

This study successfully employed a multi-temporal
remote sensing approach to quantify the spatiotemporal
dynamics of deforestation and its direct impact on land
surface temperature (LST) in Katsina Metropolis from
2002 to 2022. The analysis yielded three unequivocal
findings. First, the city experienced substantial vegetation
degradation, with a net loss of 5.51 km? of dense
vegetation and a concurrent 60% expansion of non-
vegetated areas. Second, this land cover transformation
triggered a significant warming trend, characterized by a
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