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ABSTRACT

Carbon sequestration in soils has a huge potential to decrease the rate of CO2 emission to the
atmosphere. However, little is known about Soil Organic Carbon (SOC) stock and fluxes in
savannas. This study quantified the SOC of major plant communities in the southern guinea
savanna ecological zone of Nigeria to determine their carbon sequestration potential for climate
change mitigation. Field and laboratory procedures were employed to estimate carbon stock. Soil
samples were collected by resampling from 40 permanent sampling plots for the years 2013, 2017,
and 2021, respectively. Eighty composite soil samples were taken at two depths (0-15cm and 15-
30cm). SOC concentration was estimated in the laboratory using the wet-oxidation Walkley-Black
method. Findings revealed that between 2013 and 2021, the mean bulk density at 0-15 cm
increased from 1.29 to 1.38 g cm-3, while at 15-30cm depth ranged from 1.30 to 1.36 g cm-3,
signifying an increasing trend of soil compaction. Conversely, the mean SOC at 0-15 cm decreased
from 20.11 to 14.06 Mg ha-1 while 15-30cm ranged from 15.84 to 11.92 Mg ha-1, implying carbon
loss. The mean SOC concentration was mostly higher in the 0-15 cm layer than in the 15-30 cm
layer. Savanna Woodland recorded the highest SOC (23.41 Mg ha-1) in 2013, while the Recent
fallow land recorded the lowest (7.25 Mg ha-1) in 2021. Between 2013 and 2021, carbon emissions
occurred at an annual loss rate of 8.87 Mg ha-1 yr-1. It was concluded that the restoration of the
various plant communities has the potential to sequester about 79.84 Mg ha-1 of SOC at an annual
rate of 8.87 Mg ha-1, which will provide effective climate change mitigation. This study
recommends sustainable management practices for soil carbon sequestration, such as forest
protection, fire management, afforestation, the use of organic fertilizers, and soil amendments.
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Tropical Savannas have been recognized as important
areas of interest in climate change mitigation and
adaptation studies due to their vast spatial extent,
significant biomass productivity, poor land management,
and high vulnerability to climate change (Janowiak et al.,
2017; Jibrin, 2017; Jibrin et al., 2018; Zhou et al., 2023; Jorge
et al., 2025). Savannas are characterized by a mixture of
coexisting trees, shrubs, and grasses, but range from
grasslands where trees are virtually absent to more
forest-like woodland ecosystems where trees are
dominant (Bhardwaj, 2019). The savanna ecological
landscapes are significant sources and sinks of carbon,
owing to the high rate of deforestation, forest
degradation, wildfires, and resultant soil degradation
(Smith, 2012; Odunze et al., 2017; Intergovernmental
Panel on Climate Change [IPCC], 2019a; Grieco et al.,
2024). Soils are critical for global biogeochemical cycles
that include the carbon, nutrient, and hydrological cycles
(Food and Agriculture Organization [FAO] &
Intergovernmental Technical Panel on Soils [ITPS], 2015;
IPCC, 2019b; Nikodemus et al., 2022).

There is a strong interest in stabilizing the
atmospheric abundance of CO2 and other GHGs to
mitigate the risks of climate change. Due to the impact on

radiative forcing, there is increasing emphasis on
identifying strategies that will reduce the rate of
CO2 by
anthropogenic emissions (IPCC, 2019a; Adekiya et al.,
2023; Singh et al., 2024; Jorge et al., 2025). The focus,
therefore, is on the sequestration of CO2 from the
atmosphere or point sources. Atmospheric enrichment of
GHGs
anthropogenic emissions or sequestering Carbon in plant
biomass or the soil (Anokye et al., 2021; Just et al., 2023).
Carbon sequestration is the process of removal or
capture and long-term storage of atmospheric carbon
dioxide to mitigate global warming and avoid the
dangerous impacts of climate change (Lal, 2004; Smith,
2012; Lal, 2015; Shuaib et al., 2025; Okiemute, 2025). Being
the largest pool of terrestrial carbon stock, Soil Organic
Carbon (SOC) can be a sink or source of atmospheric CO2
(Castellano et al., 2022). Therefore, mitigation of climate
change consequences requires a clear understanding of
the spatial distribution of SOC (IPCC, 2014; Abdullahi et
al., 2018; Rodrigues et al., 2023; Omotoso & Omotayo,
2024). Moreover, Carbon sequestration in soils, and other
terrestrial ecosystems, have both mitigation and
adaptation implications. The mitigation impacts of

enrichment of atmospheric offsetting

can be moderated by either reducing
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innovative agricultural systems accrue from the net
reduction in GHG emissions (Smith, 2012; IPCC, 2019b;
IPCC, 2021). The adaptation impacts of adopting
improved soils and crop management systems are based
on the reduction of the adverse effects of projected
climate change (Smith, 2012; IPCC, 2019b; IPCC, 2021;
Rodrigues et al., 2023). Soil is an important natural sink
for sequestering atmospheric CO2, and its role in
reducing the rate of enrichment of atmospheric CO2
cannot be overemphasized. However, despite a strong
inter-dependence between climate and soil quality (Akpa
etal., 2016; Pham et al., 2018; Mesele & Huising, 2024), the
role of SOC dynamics in the historic increase in
atmospheric CO2, and its strategic importance in
decreasing the future rate of CO2 emission are not
adequately understood in the developing countries
(Bessah et al., 2016; Traoré et al., 2020; Nwabueze et al.,
2021), such as Nigeria.

One of the most pressing questions concerning future
climate change is how the spatial and temporal
distribution of carbon pools and fluxes will be managed
(FAO, 2010). These problems are acute in tropical
savannas given the limited available data to parameterize
dynamic vegetation models to simulate climate change
impacts (IPCC, 2014; Rodrigues et al., 2023; Gongalves et
al.,, 2024). This indicates an urgent need to understand the
various processes that regulate the uptake and release of
CO2 and other greenhouse gases by savannas and
analyze their dependence on key environmental drivers.
Such studies are critical to predict the impacts of future
climate change on savanna carbon storage (Smith, 2012;
Janowiak et al., 2017; IPCC, 2019a; Gongalves et al., 2024)
for better land management, and to inform policy aimed
at stabilizing atmospheric CO2 concentration, and
combat climate change (FAO & ITPS, 2021; IPCC, 2021;
Kadiri et al., 2023). Further, the available data on SOC in
the literature are mostly confined to the top (0-15 cm) soil
layer and often without considering soil bulk density
(Lal, 2015). This study is aimed at quantifying the SOC of
major plant communities in the southern guinea savanna
ecological zone of Nigeria, to determine their carbon
sequestration potential for climate change mitigation.
Restoring degraded soils and ecosystems is a strategy
with multiple benefits for water quality, biomass
productivity, and reducing net CO2 emissions, especially
the degraded land in the savanna with the potential for
afforestation and soil quality enhancement.

2 Materials and Methods

2.1 Study Area

The study was carried out in the southern guinea savanna
ecological zone, situated in Lapai Local Government Area
of Niger State, Nigeria. The study area location (Figure 1)
lies between latitude 8° 39" to 8° 50" North and longitude

6° 34' to 6° 46' East (Forest Management Evaluation and
Co-ordinating Unit [FORMECU], 1994). The study area is
found within the tropical hinterland climatic belt of
Nigeria, characterized by alternating wet and dry seasons
coded as ‘Aw’ by Koppen’s classification. The mean
annual rainfall is about 1,400 mm with a mean annual
temperature of about 28 °C (Nigeria Meteorological
Agency [NiMet], 2023). The geology of the study area is
made up of Cretaceous sedimentary rocks underlain by
the Precambrian basement complex rocks (FORMECU,
1994). With an average altitude of 400 meters above sea
level, the topography is gently undulating, sloping
in different
locations. Based on FAO soil classification, the major soil

generally towards different directions
groups found in the Guinea Savanna are Luvisol,
Ferralsols, Acrisols, Lithosols, and Vertisols (International
Institute of Tropical Agriculture [IITA], 1992). The soils
largely belong to ferruginous tropical soils. In some
depression areas and valley bottom positions,
hydromorphic soils are found; whereas those around the
inselbergs and other residual hills, and at the bed of rivers,
are weakly developed soil (Areola, 1978; Jaiyeoba &
Essoka, 2006). The study area lies within the southern
Guinea savanna zone classified as woodland savanna
vegetation with the understory dominated by annual
grasses (Keay, 1953; Jaiyeoba & Essoka, 2006).

2.2 Sample Size and Sampling Technique

Fieldwork: In line with Ellert et al. (2008), a preliminary
soil sampling survey was conducted in 2013, when fifteen
soil samples were randomly selected over the entire study
area, SOC content was analyzed in the laboratory, and
statistical variables were derived as presented in Table 1.

Table 1: Preliminary soil sampling

Sample Sample Desired Confidence t-
Mean Variance Accuracy Level value
(x) (s) (d)

19g/kg  6g/kg 10% 95% 2

The required sample size was calculated using Equation

(1), as described in Ellert et al. (2008):
_ t2xs? L
nreq_(dxx)z ()
Where:

Nreq is the required number of samples,

t  isthe Student’s t-value, at a 95% confidence level,
s is the sample variance,

d is the required accuracy at 0.10,

x  is the arithmetic mean value of the sampled
parameter.

22 x 62

Npey = ——————
T4 (0.10 x 19)?
Thus, the sample size was calculated to be 40 sample plots.

=39.89
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Figure 1: Location of Kpashimi Forest Reserve and Parkland Area in Niger State, Nigeria

The resampling strategy method by Lawrence et al. (2016)
was adopted for monitoring soil organic carbon (SOC)
stocks over successive campaigns in the study area. The
rationale for the resampling strategy is to revisit and
resample spatial
variability and maximize the detection of actual changes
over time. This approach is often integrated within a

the same locationsto minimize

broader stratified random sampling design to ensure
coverage of the eight plant

original sampling points were
accurately geo-referenced by marking the locations'
coordinates and natural landmark features, so that the
exact locations can be revisited in subsequent campaigns.
The same sampling method (e.g., probe type, depth
intervals, composite sampling procedure) used in the
baseline survey was used in all successive campaigns to

comprehensive
communities. The

ensure data comparability. Standard field procedures

were employed to estimate carbon stock in eight selected
plant communities, including Savanna Woodland,
Riparian Forest, Tree Savanna, Scrubland, Grassland,
Agroforestry, Old Fallow Land, and Recent Fallow Land.
Five sample plots of 20 x 20 m? were randomly selected by
the zigzag transect technique in each of the plant
communities. The coordinates of the plots were recorded
and used for each of the years 2013, 2017, and 2021. Within
each sample plot, soils were collected from four corners
and in the centre of the square plot at two depth classes,
0-15 and 15-30 cm, respectively. The five sub-samples in
each plot were mixed thoroughly, and a composite sample
was obtained for each depth class. A total of 80 samples (5
plots x 8 Plant communities x 2 depths) were collected for
SOC estimation. Also, at each of the 40 plots, two
undisturbed core sample was collected for the two depths
(0-15 and 15-30 cm, respectively, making 2 samples per
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plot, summing up to 80 undisturbed core samples, for soil
bulk density (Db) measurements; using a soil core ring of
volume 98.2 cm?.

Laboratory Analysis: In the laboratory, the composite
soil samples were mixed thoroughly, air-dried, crushed,
passed through a 2 mm sieve, and analyzed for each
depth. Composite samples were analyzed through the
Walkley and Black method with recovery factors of 77%.
Soil bulk density was determined by the dry weight core
method by oven drying the soils at 105 °C for 24 hours.
The results of the laboratory analysis were multiplied by
a correction factor of approximately 1.29 to 1.30 to
estimate the total organic carbon (TOC) content. This
adjustment accounts for the incomplete oxidation of
organic carbon that typically occurs with the Walkley-
Black wet combustion method (FAO - GLOSOLAN
[Global Soil Laboratory Network], 2019). The soil organic
carbon of each plot was estimated by multiplying
corresponding values of fine bulk density and SOC
content using Equation (2) (IPCC 2003).
SOC = [SOC] x BD x Depth x 10 )
Where:

SOC= soil organic carbon Megagram per hectare (Mg ha-
)

[SOC]= the concentration of soil organic carbon in a given
soil mass (g C/kg soil sample)

BD= bulk density, the soil mass per sample volume (Mg
m3)

Depth= the depth of the soil sample in meters (m)

2.3 Data Analysis

Three datasets were collected for the years 2013, 2017, and

2021. The data obtained for the SOC was analysed using

the stock change method by calculating the rate of change

in SOC stock (Mg C ha? yr') between the years of

sampling over time, using Equation 3. Thereafter,

Statistical Mean and Standard Deviation values were

calculated using MS-Excel 2020 software package.
AC=3%(Ct; —Cty)/ (t; — tq1) 3)

Where:

C = carbon stock change, tonnes C per year

Ctl = carbon stock at time t1, tonnes C

Ct2 = carbon stock at time t2, tonnes C

3 Results and Discussion

3.1 Soil Organic Carbon Stock

Soil Organic Carbon Stock varied across the plant
communities evaluated in the study area over the period
under investigation, as presented in Table 2. Between 2013
and 2021, the mean bulk density at 0-15 cm increased from
1.29 to 1.38 g cm while 15-30cm ranged from 1.30 t01.36
g cm?3. Conversely, the mean SOC at 0-15 cm depth
decreased from 20.11 to 14.06 Mg ha', while 15-30cm
depth ranged from 15.84 to 11.92 Mg hal. By implication,
the study area recorded increasing soil compaction with
corresponding carbon loss.
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Table 2: Soil Organic Carbon Stock of Plant Communities

Db SOC SOC Db SocC SoC

Plant Communities (g cm3) (%) (Mg ha'1) (g cm3) (%) (Mg ha'1)
0-15cm 15-30 cm

2013
Savanna woodland 1.23 1.90 23.41 1.18 1.75 20.65
Riparian Forest 1.21 1.68 20.41 1.18 1.60 18.86
Tree Savanna 1.21 1.80 21.71 1.16 1.44 16.70
Scrubland 1.22 1.54 18.73 1.17 1.47 17.20
Grassland 1.22 1.41 17.23 1.28 1.42 18.23
Agroforestry 1.44 1.56 22.47 1.52 0.77 11.77
0ld fallow land 1.39 1.39 19.40 1.46 0.79 11.57
Recent fallow land 1.39 1.26 17.54 1.47 0.80 11.77
Mean £Std. Dev. 1.29 20.11+2.28 1.30 15.84+3.62
2017
Savanna woodland 1.21 1.70 20.57 1.28 1.75 22.37
Riparian Forest 1.28 1.98 25.40 1.28 1.60 20.45
Tree Savanna 1.30 1.51 19.58 1.28 1.00 12.76
Scrubland 1.29 1.52 19.61 1.27 1.17 14.86
Grassland 1.31 1.40 18.34 1.28 1.00 12.80
Agroforestry 1.44 1.56 22.47 1.52 0.77 11.77
0ld fallow land 1.39 1.04 14.48 1.46 0.69 10.10
Recent fallow land 1.49 1.00 14.90 1.47 0.42 6.17
Mean #Std. Dev. 1.34 19.42+3.63 1.36 13.91+5.30
2021
Savanna woodland 1.32 1.10 14.52 1.28 1.35 17.25
Riparian Forest 1.21 1.12 13.57 1.28 1.38 17.66
Tree Savanna 1.36 1.13 15.37 1.28 1.14 14.55
Scrubland 1.31 1.04 13.62 1.27 1.17 14.86
Grassland 1.32 1.04 13.73 1.28 0.64 8.19
Agroforestry 1.44 1.06 15.31 1.52 0.52 7.92
0ld fallow land 1.42 0.92 13.06 1.48 0.49 7.63
Recent fallow land 1.64 0.81 13.28 1.47 0.52 7.25
Mean £Std. Dev. 1.38 14.06+£0.89 1.36 11.92+4.58

Generally, it was observed that Carbon stock decreased
with an increase in depth because SOC values were
mostly higher in the 0-15 cm (topsoil) than in the 15-30
cm. In 2013 and 2021, Savanna Woodland recorded the
highest SOC of 23.41 Mg ha"! in 2013, while the Recent
fallow land recorded the lowest SOC of 7.25 Mg ha' in
2021. This difference among plant communities could be
attributed to differences in the proportion of SOC
contributed by the organic matter turnover of the various
vegetation types (Obalum et al. 2012; Zhang & Shao, 2014;
Tao & Rogers, 2019; Odebiri et al.,, 2024). It could be
observed that while Soil bulk density increased over the
years, the SOC Mg ha' decreased. This can be attributed
to persistent soil degradation over the years (Anikwe,

2010; Ibrahim & Idoga, 2013; IPCC, 2019a). Most soils
under the managed ecosystems contain a lower SOC pool
than their counterparts under natural ecosystems owing
to the depletion of the SOC pool in cultivated soils (Ndor
& Jorkua, 2013; Nwaogu et al., 2018; Abdulkadir et al.,
2021). The observed increasing trend in soil compaction
over the years can be attributed to the drying trend and
decreased organic matter input induced by climate change
and poor soil management practices, which result in soil
degradation (Akpa et al, 2016; Wasiu et al, 2021;
Rodrigues et al., 2023).

Analysis of changes in SOC stock over the years under
investigation has been summarized in Table 3.
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Table 3: Changes in Soil Organic Carbon Stock (0-30cm depth)

Plant Communities SOC (2013) SOC (2017) SOC Change SOC (2021) Change
Mg ha-! Mg ha-! (2013-2017) Mg ha-! (2017-2021)

Savanna woodland 44.06 42.94 -1.12 31.77 -11.16
Riparian Forest 39.27 45.85 6.58 31.24 -14.61
Tree Savanna 38.41 32.34 -6.07 2991 -2.42
Scrubland 35.93 34.47 -1.46 28.48 -5.98
Grassland 35.46 31.14 -4.32 21.92 -9.22
Agroforestry 34.23 34.23 0.00 23.23 -11.00
0Old fallow land 30.97 24.58 -6.39 20.32 -4.26
Recent fallow land 29.31 21.07 -8.24 20.92 -0.15
Mean #Std. Dev. 35.95 £4.70 33.33+8.31 -2.63 2597 £4.85 -7.35

Table 3 indicates that there is a wide range of degraded
soils with a depleted SOC stock across the study area.
Between 2013-2017, except for the Riparian forest, which
had a gain of 6.58 Mg ha, all other plant communities
experienced a loss in SOC stock, ranging from -1.12 Mg
ha' in the Savanna woodland to -8.24 Mg ha' in the
Recent fallow. However, between 2017 and 2021,
virtually all plant communities were at a loss of SOC. The
observed decline in SOC could be attributed to
unsustainable land management practices that have
resulted in soil degradation. The depletion of the SOC
stock can be attributed to accelerated erosion, oxidation,
mineralization, leaching, acidification, and nutrient
depletion (Smith, 2012; Olson, 2013; Odunze et al., 2017;
Wasiu et al., 2021; Abdulkadir et al., 2021). Most soils
under the managed ecosystems contain a lower SOC pool
owing to the unsustainable farming practices, which

result in loss of the SOC in cultivated soils (Anikwe, 2010;
Obalum et al., 2012; Ndor & Iorkua, 2013; Wasiu, 2021;
Nikodemus et al., 2022). The finding of this study is
corroborated by Lal (2001), revealing that the most rapid
loss of the SOC pool occurs in the first 5 to 10 years of
conversion from natural to agricultural ecosystems in the
tropics.

3.2 SOC Sequestration Potential

The rate of change and sequestration potential of the
various plant communities are presented in Table 4. The
mean SOC net change between 2013 and 2021 is -9.98 Mg
ha? for the respective plant communities, while the total
net change is -79.84 Mg ha"" which reflects total carbon
emission at an annual rate of 8.87 Mg ha' yrlover the
years.

Table 4: Rate of Change and Soil Organic Carbon Sequestration Potential

Plant Communities

Net Change SOC Mg ha-12013-2021

Annual Rate of Change

Savanna woodland -12.29
Riparian Forest -8.03
Tree Savanna -8.50
Scrubland -7.44
Grassland -13.54
Agroforestry/cropping -11.00
Old fallow land -10.65
Recent fallow land -8.39
Mean -9.98
Total -79.84

-1.37
-0.89
-0.94
-0.83
-1.50
-1.22
-1.18
-0.93
-1.11
-8.87

The results, as presented in Table 4, have shown that all
plant communities have lost some SOC over the years to
varying degrees. Therefore, different plant communities
and their management systems determine the ability of
the soils to sequester carbon (Tegha & Sendze, 2016;
Pham et al., 2018). Considering the differences in SOC
stock across the sampled plant communities, Grasslands
have undergone the highest SOC emission at an annual

rate of -1.50 Mg ha. Thus, the Grassland has the highest
potential to capture more C, especially with the
restoration of grasslands to forest plantations (Jiba et al.,
2024). This could be explained by the high rate of human
interference in the plant communities, manifested by
indiscriminate tree logging for farming, housing, and
energy (Albaladejo et al., 2013; Ndor & lorkua, 2013; Akpa
et al., 2016; Kadiri et al., 2021). Generally, savanna plant



communities are used intensively for food and forage
production (Janowiak et al.,, 2017; FAO & ITPS, 2021),
which makes Carbon stocks within the savanna sensitive
to management (Poeplau & Don, 2013; Gongalves et al.,
2024) and Savannas are thus vulnerable to losses in soil
carbon (Idrissou et al., 2024). Considering the study area
as a whole, the sequestration potential is approximately
8.87 Mg ha yr, if adequate measures are put in place to
reverse the trend of soil degradation over the years. The
Southern Guinea Savanna has substantial potential to
sequester more carbon, especially given that many
agricultural soils in the area have been degraded by
practices like continuous cultivation and bush burning.
The potential to sequester carbon by improving land
management practices is substantial, as carbon
sequestration would enhance productivity.

the Southern Guinea Savanna
ecological zone are critical for sustaining soil fertility,
enhancing crop productivity, mitigating climate change,
and restoring degraded lands (Onyegbule et al., 2023; Ota
et al., 2024). The region has a significant potential for

carbon sequestration, particularly through sustainable

Landscapes in

land management practices (Abegaz et al., 2022), which
makes it a potential hotspot for targeted carbon projects.
Soil organic carbon (SOC) stock and its sequestration
potential are fundamentally relevant to the Sustainable
Development Goals (SDGs) as they underpin numerous
ecosystem services essential for sustainable development,
including food security (SDG 2), climate action (SDG 13),
and life on land (SDG 15). Managing and increasing SOC
stocks offers a "win-win" strategy that delivers multiple
co-benefits across the UN's 2030 Agenda.By
implementing sustainable soil management practices,
nations can leverage the immense potential of SOC to
simultaneously address multiple global challenges and
drive progress across the entire sustainable development
agenda.

4 Conclusion

This study concludes that the soils of the plant
communities in the study area had undergone much
carbon loss due to soil degradation processes. The
observed carbon loss contributes to total greenhouse
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