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ABSTRACT

This study investigates forest carbon dynamics in Nigeria and their interactions with climatic
variability to support climate-resilient development. Leveraging satellite-derived data from 2001
to 2023, we quantified annual carbon loss using the Hansen Global Forest Change dataset and
augmented the analysis with MODIS Net Primary Productivity (NPP) and Normalized Difference
Vegetation Index (NDVI) as innovative proxies for carbon uptake and vegetation health, addressing
the limitation of Hansen's non-annual gain data. The results show that approximately 50.5 million
tonnes (tC) of carbon was lost, a mean per-hectare loss shifted from 0.045 tC/ha in 2004 to 0.374
tC/hain 2022. NDVI and NPP revealed a steady decrease in 2016 and 2017, respectively, indicating
diminished productivity. Land Surface Temperature (LST) rose above 34°C in 2021, intensifying
stress, while precipitation showed high variability without a prevailing trend. Spatial hotspots
included severe degradation in Okpara and River Moshi forests, with relative resilience in Okomu
and Oluwa. The Pearson correlations established moderate links between carbon loss and rising
LST (r = 0.62), decreasing NDVI (r = -0.58), and NPP (r = -0.51). These discoveries show the need
for integrated monitoring and emphasize opportunities under REDD+ and related mechanisms for
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resilience-building.

1 Introduction

Climate change has become one of the most important
environmental challenges of the twenty-first century. Its
effects are increasingly visible across natural ecosystems,
national economies, and human livelihoods. In response,
global efforts to reduce greenhouse gas emissions have
focused on both limiting emissions and strengthening
natural systems that can absorb carbon from the
atmosphere. Forest ecosystems play a central role in this
process. Through photosynthesis and biomass growth,
forests remove carbon dioxide from the atmosphere and
store it in vegetation and soils. Because of this capacity,
forests are widely recognized as critical components of
global climate regulation. Current estimates indicate that
forests worldwide store about 861 gigatonnes of carbon
in biomass and soils, highlighting their importance for
long-term climate change mitigation (Intergovernmental
Panel on Climate Change [IPCC], 2021).

Despite their importance, tropical forests are under
increasing pressure from human activities. The IPCC
Sixth Assessment Report estimates that deforestation and
forest degradation account for approximately 10 to 12
percent of global human-induced greenhouse gas
emissions, with the largest contributions coming from
tropical regions in Africa, Southeast Asia, and South
America (IPCC, 2021). These emissions are not caused
only by complete forest clearing. Less visible activities
such as selective logging, fuelwood harvesting, and

forest fragmentation also results in substantial carbon
losses. Although these processes may appear gradual,
their cumulative effects can be as damaging as large-scale
deforestation over time (Baccini et al., 2017; FAO, 2020).

To address these challenges, forest carbon accounting
has become a key element of international climate policy.
Forest carbon accounting involves the measurement,
reporting, and verification of carbon stocks, emissions,
and sequestration within forest ecosystems. Reliable
carbon estimates support major global initiatives such as
Reducing Emissions from Deforestation and Forest
Degradation (REDD+), Payments for Ecosystem Services
(PES), Nationally Determined Contributions (NDCs)
under the Paris Agreement, and voluntary carbon markets
(Angelsen et al., 2018; Grassi et al., 2021). The effectiveness
of these mechanisms depends on accurate data, consistent
monitoring, and methods that reflect the influence of
environmental drivers, particularly climate variability, on
forest carbon dynamics.

Recent advances in Earth observation technologies
have greatly improved the ability to monitor forest and
Satellite data now provide
continuous information on forest cover, vegetation
condition, productivity, temperature, and rainfall across
large spatial scales. Cloud-based platforms such as Google
Earth Engine (GEE) allow researchers to integrate
multiple datasets and conduct large-scale analyses

climate interactions.
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efficiently (Gorelick et al, 2017). These tools make it
possible to assess forest loss alongside vegetation indices,
productivity measures, land surface temperature, and
precipitation within a single analytical framework. Studies
increasingly show that including climate variables,
especially temperature and rainfall, improves estimates of
forest carbon dynamics by capturing climate-related stress
on vegetation growth and biomass accumulation (Pan et
al., 2011; Baccini et al., 2017; Bastin et al., 2019).

Africa plays a significant role in the global carbon cycle.
Its tropical forests and savanna ecosystems absorb an
estimated 0.6 to 1.0 gigatonnes of carbon annually, making
the continent an important global carbon sink (Pan et al.,
2011; Hubau et al, 2020). At the same time, Africa
experiences some of the highest rates of forest loss and
degradation = worldwide.  Agricultural
dependence on fuelwood, infrastructure development, and

expansion,

weak forest governance are major drivers of these changes
(FAO, 2020; Curtis et al., 2018). Climate variability further
intensifies these pressures, as rising temperatures and
changing rainfall patterns affect vegetation productivity,
fire occurrence, and overall forest resilience (Arowolo et
al., 2018; IPCC, 2022).

Nigeria represents a clear example of these overlapping
challenges. As the most populous country in Africa,
Nigeria faces strong land-use pressures linked to
population growth,
agriculture, and increasing demand for energy. The
country has one of the highest deforestation rates globally,
losing an estimated 350,000 to 400,000 hectares of forest
each year over the past two decades (FAO, 2020). Forest

rapid wurbanization, expanding

loss in Nigeria is driven by several factors, including
shifting cultivation, illegal logging, charcoal production,
oil and gas activities, and infrastructure development
(Ezenwaka & Eboh, 2019; Ojonigu et al., 2022). These
processes reduce forest carbon stocks and increase
vulnerability to climate-related impacts such as flooding,
drought, and biodiversity loss.

Delayed implementation, stakeholder
engagement, insufficient integration of climate variability,
and challenges in scaling carbon monitoring beyond pilot
areas all hampered its effectiveness (Forest Carbon
Partnership Facility, 2022). In response, Nigeria has
attempted to participate in international climate finance

weak

and forest conservation initiatives. The Cross River State
REDD+ Programme, supported by the United Nations
Programme on Reducing Emissions from Deforestation
and Forest Degradation (UN-REDD), is the most
prominent example. The programme sought to integrate
mitigation
development planning. While it represented an important
policy step, evaluations have identified limitations related
to data quality, monitoring capacity, and long-term

forest conservation into climate and

sustainability. Other initiatives, including mangrove

conservation projects in the Niger Delta, have
incorporated elements of carbon management but remain
limited in spatial coverage
consistency (United Nations Development Programme,
2014).

Nigeria’s national forest monitoring and carbon
accounting systems continue to face structural challenges.

These include fragmented data sources, reliance on

and methodological

periodic field inventories, and limited integration of
continuous satellite-based indicators. In many cases,
forest cover change, climate variables, and carbon
estimation are treated as separate components rather than
interconnected processes. This separation increases
uncertainty in national carbon reporting and weakens
Nigeria’s capacity to effectively access REDD+, PES, and
emerging carbon market opportunities (Griscom et al.,
2020; Forest Carbon Partnership Facility [FCPF], 2022).
Recent studies emphasize the value of integrating
forest structure, productivity, and climate indicators to
improve carbon accounting accuracy. Net Primary
Productivity (NPP), derived from Moderate Resolution
Imaging Spectroradiometer (MODIS) data, has become an
important indicator of carbon sequestration potential.
NPP reflects both vegetation growth and climatic
influences on plant productivity (Running et al., 2004).
When combined with forest loss datasets such as the
Hansen Global Forest Change product, NPP provides a
dynamic perspective on carbon losses and gains over time.
However, few studies have applied this integrated
approach within West African or Nigerian forest
ecosystems using scalable cloud-based platforms, leaving
a significant gap in regional forest carbon assessment.
This study addresses these gaps by introducing a
climate-informed, satellite-based framework for forest
carbon assessment in Nigeria. Using Google Earth Engine,
we integrate annual forest loss detection, vegetation
productivity proxies, and key climate variables, including
land surface temperature and rainfall, to generate
spatially explicit insights into forest carbon dynamics. By
situating forest carbon accounting within a broader
climatic context, we enhance the accuracy and policy
relevance of carbon estimates while demonstrating a
scalable approach suitable for national-level monitoring.
Beyond its technical contributions, this work arrives at
a critical juncture for Nigeria's climate commitments. As
the country seeks to strengthen its Nationally Determined
Contributions and expand participation in results-based
climate finance, robust, transparent, and climate-sensitive
carbon accounting The
approach presented here contributes to this objective by
bridging methodological gaps between forest monitoring,
climate analysis, and carbon estimation. It offers evidence-
based insights for policymakers, researchers, and climate

systems become essential.

finance stakeholders while responding to growing calls



for integrated, data-driven solutions that align ecological

integrity with climate mitigation and sustainable
development goals in tropical forest regions.

Therefore, this study aims to integrate forest carbon
accounting with climate drivers to inform climate-resilient
strategies in Nigeria and to identify gaps in national
monitoring tools. Specific objectives include:

i.  Quantify forest carbon loss from 2001 to 2023 using

satellite data.

ii. =~ Examine spatial and temporal carbon flux patterns
in relation to land surface temperature and
precipitation.

iii. ~ Assess vegetation dynamics via NDVI and NPP to
contextualize carbon trends.

iv.  Discuss implications for monitoring systems and
resilience strategies, including REDD+ and related
mechanisms.

2 Materials and Methods

2.1 Study Area

Nigeria exhibits one of the most diverse ecological
gradients in West Africa, spanning approximately 923,768
km? from the humid equatorial south to the semi-arid and
arid north. This latitudinal variation creates distinct
ecological/vegetation zones, primarily aligned parallel to
the coast and influenced by rainfall patterns (decreasing
from south to north), temperature, soil types, and human
activities. The zones are classically defined by Keay (1949)
and mapped nationally by FORMECU (1998), with minor
variations in recent assessments. From south to north, the
major ecological zones include:

e Mangrove Swamp and Coastal Vegetation: Along
the Atlantic coast and Niger Delta, featuring
brackish-water mangroves (e.g., Rhizophora spp.)
with stilt roots, high biodiversity, and significant
carbon storage in wetlands, though threatened by
pollution and erosion.

e Freshwater Swamp Forest: Inland from mangroves,
consisting of dense, seasonally flooded forests with
species like Raphia palms and Mitragyna ciliata;
these act as vital carbon-rich buffers but are often
impenetrable.

e Lowland Rainforest: Dense, evergreen multi-
layered tropical forests in the southwest and
southeast (e.g., Cross River, Ogun states), with
emergent trees >40 m, annual rainfall >2000 mm, and
exceptional species diversity; historically the

primary forest estate but heavily cleared.

e Derived Savanna: A human-modified transitional
zone north of the rainforest, now dominated by
grasses, scattered trees, and secondary woodland
due to past forest degradation.
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¢ Guinea Savanna (Southern and Northern variants):
The largest zone in central Nigeria, with tall
grasses, drought-resistant trees (e.g., Isoberlinia,
Daniellia), rainfall; it
substantial remnants and

contains
supports

and bimodal
forest
agriculture/livestock.

e Sudan Savanna: Drier northern belt with shorter
grasses, thorny acacias, and scattered trees; marks
the shift to semi-arid conditions.

e Sahel Savanna: The extreme northern fringe, with
sparse vegetation, short grasses, and desert-like
features; highly vulnerable to drought and
desertification.

Figure 1 provides a clear visual representation of these

zones, illustrating the pronounced south-to-north

transition from humid forest ecosystems to arid savannas.
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Figure 1: Owverview of agro-ecological zones in Nigeria,
highlighting the south-to-north transition.

This analysis focused on over 950 forest polygons derived
from Hansen’s Global Forest Change dataset (v1.11),
prioritizing high-forest states such as Cross River
(rainforest/montane), Ogun (rainforest/derived savanna),
Niger
savanna), and others with significant forest estates.
Nigeria's exceptionally high forest loss rate, exceeding
400,000 hectares annually between 2000 and 2020 (Global
Forest Watch, 2023), necessitates urgent scientific and
policy action. Vulnerability to climate change, intensified

Taraba (Guinea savanna/montane), (Guinea

by rapid population growth, agricultural expansion, and
economic pressures, emphasizes the need for spatial
carbon data. This is especially relevant to Nigeria's
Nationally Determined Contributions (NDCs), targeting a
20% unconditional and 45% conditional GHG reduction
by 2030.

Forest-dependent communities across these zones face
declining livelihoods from degradation. Remote sensing
integrated with climate variables enables real-time forest
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health monitoring, supports local initiatives, improves
transparency for international reporting, and paves the
way for tools like green bonds and carbon-linked
insurance.

Moreover, communities in Nigeria that rely on forests
are experiencing worsening livelihoods due to ecosystem
degradation. Using remote sensing for carbon tracking
along with climate factors can help monitor forest health in
real time and support local initiatives. This strategy can
also increase transparency in reporting to international
climate finance systems and lay the groundwork for
innovative funding tools like green bonds and carbon-
linked insurance.

2.2 Methods

This study employed a multi-source, satellite-based remote
sensing approach to estimate forest carbon flux and
analyze its interaction with climatic drivers, specifically
precipitation, Normalized Difference Vegetation Index
(NDVI), Land Surface Temperature (LST), and Net
Primary Productivity (NPP) over 23 years spanning 2001 to
2023. We implemented the analysis in the Google Earth
Engine (GEE) cloud platform using globally available, pre-
processed geospatial datasets. The methodology integrates
land cover change, carbon estimation models, vegetation
health indices, and climate datasets.

For assessing forest carbon loss, we utilized the Global
Forest Change (GFC) v1.11 dataset by Hansen et al. (2023),
specifically the annual loss year band, which provides
yearly forest loss data from 2001 to 2023. We estimated
carbon loss by combining forest loss area with assumed
biomass and carbon fraction values.

A significant limitation of the Hansen dataset warrants
mention: the forest gain layer represents a cumulative
binary indicator showing areas that experienced forest gain
at any time between 2000 and 2012, rather than providing
annual gain data. This constraint prevents yearly tracking
of carbon gain using GFC data alone.

To address this limitation, we introduced two
productivity proxies:

e Net Primary Production (NPP) from MODIS

(MOD17A3HGF), representing annual biomass
accumulation from 2001 to 2023
e NDVI from MODIS (MOD13Q1), indicating

vegetation greenness and photosynthetic activity,
averaged annually from 2001 to 2022

2.3 Data Sources and Acquisition
All analysis was conducted using the JavaScript API of
GEE. The primary datasets included:
¢ Forest Cover Change: Hansen Global Forest Change
v1.11. 30 m resolution (2001-2023) Hansen et al.
(2013)

e NDVI: MODIS (MOD13Q1), 16-day composites at
250 m resolution (2001-2022)

e LST: MODIS (MOD11A2), 8-day composites at 1
km (2001-2023), converted from Kelvin to Celsius

e Precipitation: Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS) Funk et al.
(2015) daily rainfall at 0.05° resolution (~5 km)
(2001-2023)

e Net Primary Productivity (NPP): MODIS
MOD17A3HGEF (2001-2023)
e Administrative Boundaries: National and

subnational (state-level) boundaries were obtained
from the Federal Ministry of Environment (FME),
Nigeria. These provided the geographic context for
spatial aggregation and visualization.

o TForest Reference Polygons: Official maps of forest
estates and protected areas across Nigeria were also
sourced from the Federal Ministry of Environment.
These polygons formed the basis for zonal statistics,
spatial analysis, and forest-level trend analysis.

2.4 Data Pre-processing

All raster datasets were clipped to the bounds of the forest

FeatureCollection. Annual composites were generated to

remove short-term variability and focus on long-term

trends.

e Forest loss and gain rasters were reclassified to

binary values (1 = loss/gain; 0 = no change) to allow
zonal statistics.

e Precipitation and LST data were resampled to a
common 1 km grid using bilinear interpolation.

e Annual composites were generated for each
variable (NDVI, precipitation, LST) to reduce
seasonal noise.

2.5 Forest Carbon Loss Estimation
We estimated carbon loss annually using Hansen's forest
loss year band, pixel-level area, and biomass assumptions.
Each 30 m pixel received an aboveground biomass (AGB)
value of 150 t/ha, drawn from regional African tropical
forest averages (Saatchi et al., 2011; FAO, 2020). This
provides a reasonable national-scale estimate for mixed
biomes. We applied a carbon fraction of 0.47, the IPCC
Tier 1 default for tropical forests (IPCC 2006 Guidelines,
Vol. 4, Ch. 4). This conservative, widely used standard
shows limited variability, typically ranging from 0.45 to
0.50.

Nigeria's ecological diversity (e.g., higher AGB in
rainforest/mangrove ~156-200 t/ha vs. lower in savanna
~50-120 t/ha from recent studies) may introduce some



uncertainty, potentially overestimating in drier zones and
underestimating in wetter ones. However, this uniform
approach aligns with common large-scale remote sensing
practices where consistent, high-resolution zone-specific
data are limited.

Sensitivity analysis: Testing biomass levels of 120-180
t/ha (spanning biome variability) yielded cumulative
losses of 40.4-60.6 MtC (mean ~50.5 MtC), supporting the
robustness of our primary estimate. Future work could
adopt zone-stratified factors from Nigeria's REDD+ FREL
or national inventories.

The per-pixel carbon loss was computed as:

Carbon loss (t/C) = pixel area (ha) x
biomass per hectares (t/ha) x carbon fraction (0.47)

Annual carbon loss was then calculated by summing
values where forest loss occurred in each year (2001-2023),
using zonal statistics over the forest polygons.

2.6 Mean Annual Carbon Loss per Hectare

To normalize the loss across varying forest sizes, mean
annual carbon loss per hectare was calculated by dividing
annual carbon loss by the total forest area (in hectares)
derived from the forest geometry. This provided a
standardized carbon degradation indicator over time,
enabling inter-annual and spatial comparisons.

2.7 Time Series Analysis of Vegetation, Productivity, and
Hydro-Climatic Proxies

We assessed vegetation dynamics, productivity, and
hydro-climatic variability using MODIS-derived indices
and CHIRPS precipitation data to provide context for
forest carbon trends. All analyses were performed in
Google Earth Engine, with annual composites generated to
minimize seasonal noise and focus on long-term patterns
across forest estates.
¢ Normalized Difference Vegetation Index (NDVI):
MODIS MOD13Q1 data (16-day composites at 250
m resolution) were used to evaluate vegetation
greenness and photosynthetic activity. NDVI values
were scaled by x0.0001, and annual means were
computed for the period from 2001 to 2022. Declines
in NDVI proxies
degradation or climatic stress.

served as for ecosystem

e Net Primary Productivity (NPP): Annual NPP data
from MODIS (MOD17A3HGF) were used as a proxy
for carbon sequestration capacity. NPP values
(originally in kg C/m?/year) were converted to
tonnes C/ha/year using:
NPP (tC/halyear) = MODIS NPP x 0.0001 x 10....
This allowed direct comparison with forest loss
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estimates, offering a continuous productivity-based
perspective on forest condition.

e Land Surface Temperature (LST) - LST was
derived from MODIS Aqua (MOD11A2) 8-day
composites, converted from Kelvin to Celsius
using: LST (°C) = (value x 0.02) — 273.15.. Annual
means were computed for each year from 2001 to
2023, highlighting long-term warming trends over
forest zones.

e Precipitation Trends: Daily CHIRPS precipitation
data (0.05° resolution) were summed to annual
totals and averaged over forest regions for each
year from 2001 to 2023. This offered insights into
hydro-climatic
influence on forest carbon dynamics.

variability and its potential

2.8 Statistical Analysis
To examine linear relationships between annual forest
carbon loss and key climate/vegetation variables (Land
Surface Temperature [LST], Normalized Difference
Vegetation Index [NDVI], Net Primary Productivity
[NPP],
correlation coefficients (r) using annual mean values for
the period 2001-2023 (n = 23 years; df = 21).

Pearson's correlation coefficient is a widely used
parametric statistic that quantifies both the strength and

and precipitation), we computed Pearson's

direction of the linear association between two continuous
variables. It ranges from -1 to +1:

The coefficient is calculated using the formula: r =
cov(X, Y) / (6_X x 0_Y), where cov is the covariance
between X and Y, and o is the standard deviation.

2.9 Data Integration and Visualization
e All variables were harmonized on an annual basis.

e Trends were visualized using line charts within
GEE’s ui.Chart module.

to CSV for further
interpretation and plotting where necessary.

e Values were exported

e Spatial outputs were visualized in GEE and ArcGIS
for clarity and presentation.

3 Results and Discussion

3.1 National Forest Carbon Loss (2001-2023)
From 2001 to 2023, Nigeria's forests lost a cumulative total
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of approximately 50.46 MtC. Annual carbon losses ranged
from a low of 568,790 tC in 2004 to a peak of 4,745,912 tC in
2022, reflecting a significant acceleration in forest
degradation over time. Notably, five of the seven highest
loss years occurred between 2018 and 2023, highlighting an
intensification of deforestation in the most recent decade,
as shown in Figure 2.

Carbon Loss Trend (2001-2023)
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Figure 2: Annual Carbon Loss Trend

Beyond total carbon loss, the mean annual carbon loss per
hectare, a measure of degradation severity within forested
areas, also exhibited a sharp rise. This metric increased
from 0.045 tC/ha in 2004 to 0.374 tC/ha in 2022, with an
overall average of 0.173 tC/ha/year over the 23 years. This
upward trend in per-hectare loss suggests that not only are
forests shrinking in area, but the remaining patches are also
being degraded more intensively.

Figure 3 visually represents the total carbon lost in
tonnes of CO, equivalent (tCO,e) per forest polygon,
accumulated between 2001 and 2023. The color gradient
emphasizes increasing levels of emissions due to
deforestation, following this logic: Green indicates areas
with little to no detected carbon loss, orange highlights
areas with moderate biomass loss, and red signifies
hotspots of severe deforestation, where forests have
emitted over 2000 tonnes of carbon.

— T —

g

—
Loss per Forest (2001-2023)

Figure 3: Cumulative Carbon Loss per Forest

These findings align with satellite-based assessments by
Baccini et al. (2017) and Saatchi et al. (2011), which
documented extensive carbon loss across African tropical
forests,
regeneration. Nigeria’s pattern of rising total and per-
hectare carbon losses underscores the dual challenge of
forest area reduction and internal ecosystem degradation.
This adds urgency to the country’s forest conservation

often outpacing any regrowth or natural

efforts and highlights the need for robust forest
monitoring, protection, and restoration interventions.

3.2 Land Surface Temperature (LST) Trends (2004—-2024)
Figure 4 shows that the trend in the mean annual LST over
forested regions ranged from 31.31 °C in 2004 to a peak of
33.37 °Cin 2021. Though there was a slight cooling in 2022
(32.43 °C), the long-term trend reflects warming of over
2 °C since the early 2000s. This long-term warming trend
is quantitatively supported by the moderate positive
correlation between annual carbon loss and LST (r = 0.62,
p < 0.01; see Table 1), confirming that elevated
temperatures are statistically associated with accelerated
forest degradation across the study period.

These findings support studies such as Ayanlade et al.
(2018) and Akinsanola & Zhou (2020), which observed
significant warming trends in Nigeria’s southern
ecological zones. The temperature rise also mirrors the
IPCC ARG6 regional assessment for West Africa, which
projects more frequent heat stress and altered vegetation
regimes. The 2°C increase is consistent with long-term
trends reported by the Nigerian Meteorological Agency
(NIMET),
vegetation stress and increased evapotranspiration.

indicating that warming contributes to

Mean Land Surface Temperature (2001-2023)

Figure 4: Annual Mean LST

3.3 NDVI and Vegetation Response (2001-2022)

The mean NDVI presented in Figure 5 reflects vegetative
greenness, which ranged from 0.438 in 2001 to a peak of
0.479 in 2019. The NDVI declined slightly after 2020,
reaching 0.458 in 2022.

Years with the lowest NDVI, such as 2015 (0.439) and
2022 (0.458), coincide with some of the highest carbon loss
years. This supports an inverse relationship between
vegetation health and forest degradation. This qualitative
observation of an inverse relationship is quantitatively
confirmed by the Pearson correlation analysis (r =-0.58, p
< 0.01) in Table 1. While short-term NDVI recoveries
(e.g., 2019), they were sustained,
highlighting ongoing forest stress.

occurred not



Mean NDVI Over Forest Estates (2001-2022)

Figure 5: Annual Mean NDVI and Vegetation Response

This aligns with findings from Ayanlade et al. (2018) and
Saatchi et al. (2011), who demonstrated the link between
vegetation greenness and forest integrity using NDVI-
based assessments. Furthermore, NDVI trends have been
validated as a proxy for biomass change and forest
condition across West Africa by IPCC (2021).

3.4 Precipitation Variability (2004-2024)

Annual precipitation ranged from 1,141 mm (2013) to 1,440
mm (2019) as depicted in Figure 6. Despite these
fluctuations, wet years such as 2018-2019 did not coincide
with major drops in carbon loss, indicating that rainfall
alone does not buffer forests from human-driven
degradation. This is confirmed statistically in Table 1 by the
weak, non-significant correlation between carbon loss and
-0.22, p > 0.05), showing that rainfall
fluctuations explain little of the forest degradation
compared to human factors.

precipitation (r =

Annual Mean Precipitation Over Forests (2001-2023)

2010 2012 2014

Figure 6: Annual Mean Precipitation

This pattern between precipitation and forest loss mirrors
the findings of Bonan (2008), which suggest that
anthropogenic pressures often override natural climate
variability. Similar rainfall variability has been reported by
Anyadike (2009) and Ezenwaji et al. (2016), especially
delayed rainy season onset in southern Nigeria.

3.5 NPP Trends and Ecosystem Productivity (2001-2023)

Net Primary Productivity (NPP) in Nigeria’s forests ranged
from 2.85 tC/ha in 2021 to 3.97 tC/ha in 2012, averaging ~3.5
tC/ha/year over the study period. Notably low NPP values
in2017 and 2021, as shown in Figure 7, coincided with peak
carbon loss years, suggesting that declining productivity
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may reflect the combined impact of deforestation and
climate stress. This observed pattern of declining
productivity coinciding with elevated carbon loss is
quantitatively supported by the moderate negative
correlation between annual carbon loss and NPP (r=-0.51,
p < 0.05) as shown in Table 4.1, reinforcing the role of
reduced ecosystem productivity in diminishing forest
carbon sink capacity. This trend implies a weakening
carbon sink capacity and aligns with MODIS-based
observations of declining tropical forest productivity
globally (Zhao & Running, 2010).

These findings support broader research linking NPP
declines to land-use change and warming trends in
tropical regions (Pan et al, 2011; Grace et al., 2014).
Reduced NPP also indicates impaired forest regeneration
and soil fertility, echoing FAO (2020) reports that fewer
than 10% of Nigerian forests show signs of active
regrowth. Without effective reforestation and protection,
ecosystem productivity may continue to degrade,
undermining Nigeria’s forest-based climate resilience.

Mean Annual NPP over Forest Estates (2001-2023)
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Figure 7: Annual Mean NPP

3.6 Top Forests by Carbon Dynamics

Among forests with the highest carbon gains, Okomu
topped the list (454,409 tonnes), followed by Sapoba
(205,114 tC) and Obaretin (116,739 tC). However, these
forests also recorded substantial losses: Okomu (1.32
million tC), Sapoba (1.47 million tC). Forests like Oluwa,
Ekiadolor, and Usonigbe also reflect this gain-loss duality.
Conversely, forests such as Okpara (3.1 million tC loss,
<1,000 tC gain) and River Moshi (2.14 million tC loss,
negligible gain) indicate alarming degradation as shown
in Figures 8 and 9, respectively.

Top 10 Forests by Carbon Loss {and their Gain}

Figure 8: Top 10 Forests by Carbon Loss (and their Gain)

These mixed patterns align with observations from
Ezebilo and Mattsson (2010), who found that forest
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management regimes influence carbon fluxes in Nigeria.
Their study of Cross River forests revealed that
enforcement inconsistencies result in adjacent forest blocks
exhibiting divergent degradation rates.

Top 10 Forests by Carbon Gain (snd their Loss)
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Figure 9: Top 10 Forests by Carbon Loss (and their Gain)

3.7 Correlations between annual forest carbon loss and
selected variables

Table 1: Pearson correlation coefficients (r) between annual

forest carbon loss and selected variables (2001-2023; n =

23,df = 21)

Vaf'lable Pearson Direction P~ Significance
Pair r value

Carbon Loss vs. - Highly

LST 0.62 Positive T <0.01 significant
Carbon Loss vs. Negative Highly

NDVI 058 <001 ionificant
Carbon Loss vs. Negative s

NPP -0.51 . <0.05 Significant
Carbon Loss vs. Negative Not
Precipitation 022 (weak) | >0.05 significant
The Pearson correlations shown in Table 1 reveal

meaningful patterns in the relationships between annual
forest carbon loss and the examined variables over the 23
years. A moderate positive correlation exists between
carbon loss and Land Surface Temperature (LST) (r = 0.62,
p < 0.01), indicating that periods of higher surface
temperatures are associated with increased carbon
emissions from forest degradation. This suggests that
warming may intensify stress factors such as drought,
evapotranspiration, or fire susceptibility in Nigerian
forests.

In contrast, moderate negative correlations are
observed with vegetation greenness (NDVI; r = -0.58, p <
0.01) and productivity (NPP; r = -0.51, p < 0.05). These
inverse relationships imply that declines in photosynthetic
activity and biomass accumulation are linked to higher
rates of carbon loss, consistent with reduced ecosystem
health and diminished carbon sequestration capacity
under combined climatic and anthropogenic pressures.

Precipitation shows only a weak and non-significant
negative association (r = -0.22, p > 0.05), suggesting that
hydro-climatic variability alone does not strongly explain

national-scale carbon loss trends. This highlights the
predominant role of other drivers, such as land-use
change and deforestation, in recent forest dynamics. These
results show the synergistic effects of rising temperatures
and declining vegetation productivity in accelerating
forest carbon emissions, while rainfall appears to offer
limited buffering at the aggregated scale.

4 Discussion

4.1 Forest Carbon Loss, Human Pressure, and Climate
Interaction

The carbon losses we observed across Nigerian forests
cannot be attributed to climatic variability alone; they're
fundamentally driven by anthropogenic
The weak and insignificant
relationship between precipitation variability and carbon

sustained
pressure. statistically
loss suggests something important: forest degradation in
Nigeria doesn't primarily stem from hydro-climatic
factors. Instead, it's linked to land-use change, logging,
agricultural expansion, and fuelwood extraction. Rising
land surface temperatures and declining vegetation
productivity appear to function as amplifiers rather than
initiators of forest carbon loss. They intensify degradation
once canopy disturbance has already occurred.

This interaction merits close attention. While climate
stress alone may not explain forest loss, elevated surface
temperatures more than 2°C over two decades reduce
post-disturbance recovery potential. They do this by
suppressing net primary productivity and increasing
evapotranspirative stress. In degraded forests like Okpara
and River Moshi, this feedback loop likely accelerates
transitions from closed forest to fragmented or savanna-
like states, diminishing long-term sequestration capacity.
Similar dynamics have been documented in degraded
tropical forests in Central Africa and the Amazon, where
anthropogenic disturbance lowers resilience to warming
and drought (Baccini et al., 2017; Hubau et al., 2020).

In contrast, relatively resilient systems like Okomu and
Oluwa demonstrate that forest structure and governance
matter significantly. These areas maintain higher
productivity despite regional warming, suggesting that
intact canopy cover, effective management regimes, and
lower disturbance levels can buffer climatic stress. This
divergence reinforces an important point: interventions
should be targeted spatially rather than relying on
uniform national strategies.

4.2 Implications for Climate Finance and Carbon Markets

From a climate finance perspective, the findings highlight
both opportunities and constraints. Nigeria’s forest
carbon losses represent a significant mitigation liability,
but also a potential entry point into results-based climate
finance mechanisms, provided emissions can be credibly
reduced. Systematic, geospatial monitoring that integrates



forest change, productivity, and climate stress is a
prerequisite for participation in performance-based
mechanisms such as Reducing Emissions from
Deforestation and Forest Degradation (REDD+) and
voluntary carbon markets (VCMs).

Recent market data indicate that high-integrity nature-
based credits, those with strong additionality, permanence
safeguards, and transparent monitoring, were trading
largely between USD 15-26 per tCOze in late 2025, with
premium projects occasionally exceeding this range.
However, market confidence has become increasingly
selective, penalizing projects with weak baselines, poor
leakage control, or governance risks. For Nigeria, this
implies that carbon finance is not automatic: without
robust Monitoring, Reporting, and Verification (MRV)
systems and clear land tenure arrangements, projected
revenues may not materialize.

Payment for Ecosystem Services (PES) schemes offer a
complementary pathway, particularly at subnational and
community scales. Evidence from Costa Rica, Ethiopia,
Kenya, and the Democratic Republic of Congo
demonstrates that PES can stabilize forest cover when
payments are predictable and linked to local livelihoods. In
Nigeria, however, PES implementation faces institutional
barriers, including unclear benefit-sharing frameworks
and limited legal recognition of community forest rights.
These challenges suggest that PES expansion must advance
cautiously and incrementally, anchored in pilot-scale
success rather than rapid national rollout.

4.3 Policy Relevance and Implementation Constraints
Nigeria’s Climate Change Act (2021), revised National
Forest Policy (2020), and updated Nationally Determined
Contributions provide an enabling policy framework, but
implementation gaps remain substantial. The absence of a
centralized national carbon registry and harmonized MRV
protocols limits Nigeria’s readiness for large-scale results-
based payments. While recent green bond issuances (2025)
and announcements of a national climate finance facility
indicate growing political momentum, translating finance
into durable forest outcomes will require institutional
coordination across federal, state, and local levels.

An important point deserves emphasis: carbon finance
shouldn't prioritize only high-performing forests. While
resilient areas are attractive for low-risk investment,
degraded hotspots represent the greatest potential for
mitigation enhancement. A balanced portfolio combining
protection of resilient forests with restoration and avoided
degradation in high-risk zones offers the most credible
pathway for both emissions reduction and ecosystem
recovery.

Scalable platforms such as Google Earth Engine provide
a practical solution to Nigeria's data constraints, enabling
continuous monitoring at relatively low cost. However,
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satellite-based systems must be complemented by ground
validation, social safeguards, and governance reforms to
ensure credibility and equity.

§ Conclusion

This study presents a comprehensive, climate-informed
assessment of forest carbon dynamics in Nigeria from 2001
to 2023, revealing sustained and accelerating carbon losses
driven primarily by anthropogenic pressures rather than
hydro-climatic ~ variability. =~ Declining  vegetation
productivity, rising land surface temperatures, and
spatially concentrated degradation hotspots indicate that
Nigeria’s forests are experiencing a progressive erosion of
both carbon stocks and recovery potential.

By integrating satellite-derived forest loss with Net
Primary Productivity and vegetation health indicators,
this study advances beyond static carbon accounting
approaches and provides a dynamic perspective on net
carbon flux. The framework addresses key limitations of
existing datasets and demonstrates the value of
productivity-based proxies for annual monitoring,
particularly in data-limited contexts. While uncertainties
remain related to biomass assumptions, spatial resolution,
and exclusion of soil carbon, the approach offers a scalable
and transparent foundation for national Monitoring,
Reporting, and Verification systems.

The findings carry clear implications for Nigeria’s
climate commitments. Continued forest degradation
threatens biodiversity, livelihoods, the
credibility of national mitigation targets. At the same time,
spatial differentiation between resilient and highly

rural and

stressed forests offers an evidence base for targeted
intervention. Aligning these biophysical insights with
performance-based mechanisms such as REDD+, carefully
designed Payment for Ecosystem Services schemes, and
climate-aligned green bonds could unlock meaningful
finance, but only if institutional, governance, and MRV
challenges are addressed.

Ultimately, reversing Nigeria’s forest carbon trajectory
will require more than data alone. It demands coordinated
policy action, community engagement, and sustained
grounded in credible By
demonstrating how open satellite data and cloud-based
analytics can inform climate-resilient forest governance,
this study contributes a practical pathway toward
integrating carbon accounting, climate adaptation, and
sustainable development in Nigeria.

investment science.
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