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1 Introduction 

Climate change has become one of the most important 

environmental challenges of the twenty-first century. Its 

effects are increasingly visible across natural ecosystems, 

national economies, and human livelihoods. In response, 

global efforts to reduce greenhouse gas emissions have 

focused on both limiting emissions and strengthening 

natural systems that can absorb carbon from the 

atmosphere. Forest ecosystems play a central role in this 

process. Through photosynthesis and biomass growth, 

forests remove carbon dioxide from the atmosphere and 

store it in vegetation and soils. Because of this capacity, 

forests are widely recognized as critical components of 

global climate regulation. Current estimates indicate that 

forests worldwide store about 861 gigatonnes of carbon 

in biomass and soils, highlighting their importance for 

long-term climate change mitigation (Intergovernmental 

Panel on Climate Change [IPCC], 2021). 

Despite their importance, tropical forests are under 

increasing pressure from human activities. The IPCC 

Sixth Assessment Report estimates that deforestation and 

forest degradation account for approximately 10 to 12 

percent of global human-induced greenhouse gas 

emissions, with the largest contributions coming from 

tropical regions in Africa, Southeast Asia, and South 

America (IPCC, 2021). These emissions are not caused 

only by complete forest clearing. Less visible activities 

such as selective logging, fuelwood harvesting, and 
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forest fragmentation also results in substantial carbon 

losses. Although these processes may appear gradual, 

their cumulative effects can be as damaging as large-scale 

deforestation over time (Baccini et al., 2017; FAO, 2020). 

To address these challenges, forest carbon accounting 

has become a key element of international climate policy. 

Forest carbon accounting involves the measurement, 

reporting, and verification of carbon stocks, emissions, 

and sequestration within forest ecosystems. Reliable 

carbon estimates support major global initiatives such as 

Reducing Emissions from Deforestation and Forest 

Degradation (REDD+), Payments for Ecosystem Services 

(PES), Nationally Determined Contributions (NDCs) 

under the Paris Agreement, and voluntary carbon markets 

(Angelsen et al., 2018; Grassi et al., 2021). The effectiveness 

of these mechanisms depends on accurate data, consistent 

monitoring, and methods that reflect the influence of 

environmental drivers, particularly climate variability, on 

forest carbon dynamics. 

Recent advances in Earth observation technologies 

have greatly improved the ability to monitor forest and 

climate interactions. Satellite data now provide 

continuous information on forest cover, vegetation 

condition, productivity, temperature, and rainfall across 

large spatial scales. Cloud-based platforms such as Google 

Earth Engine (GEE) allow researchers to integrate 

multiple datasets and conduct large-scale analyses  
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efficiently (Gorelick et al., 2017). These tools make it 

possible to assess forest loss alongside vegetation indices, 

productivity measures, land surface temperature, and 

precipitation within a single analytical framework. Studies 

increasingly show that including climate variables, 

especially temperature and rainfall, improves estimates of 

forest carbon dynamics by capturing climate-related stress 

on vegetation growth and biomass accumulation (Pan et 

al., 2011; Baccini et al., 2017; Bastin et al., 2019). 

Africa plays a significant role in the global carbon cycle. 

Its tropical forests and savanna ecosystems absorb an 

estimated 0.6 to 1.0 gigatonnes of carbon annually, making 

the continent an important global carbon sink (Pan et al., 

2011; Hubau et al., 2020). At the same time, Africa 

experiences some of the highest rates of forest loss and 

degradation worldwide. Agricultural expansion, 

dependence on fuelwood, infrastructure development, and 

weak forest governance are major drivers of these changes 

(FAO, 2020; Curtis et al., 2018). Climate variability further 

intensifies these pressures, as rising temperatures and 

changing rainfall patterns affect vegetation productivity, 

fire occurrence, and overall forest resilience (Arowolo et 

al., 2018; IPCC, 2022). 

Nigeria represents a clear example of these overlapping 

challenges. As the most populous country in Africa, 

Nigeria faces strong land-use pressures linked to 

population growth, rapid urbanization, expanding 

agriculture, and increasing demand for energy. The 

country has one of the highest deforestation rates globally, 

losing an estimated 350,000 to 400,000 hectares of forest 

each year over the past two decades (FAO, 2020). Forest 

loss in Nigeria is driven by several factors, including 

shifting cultivation, illegal logging, charcoal production, 

oil and gas activities, and infrastructure development 

(Ezenwaka & Eboh, 2019; Ojonigu et al., 2022). These 

processes reduce forest carbon stocks and increase 

vulnerability to climate-related impacts such as flooding, 

drought, and biodiversity loss. 

Delayed implementation, weak stakeholder 

engagement, insufficient integration of climate variability, 

and challenges in scaling carbon monitoring beyond pilot 

areas all hampered its effectiveness (Forest Carbon 

Partnership Facility, 2022). In response, Nigeria has 

attempted to participate in international climate finance 

and forest conservation initiatives. The Cross River State 

REDD+ Programme, supported by the United Nations 

Programme on Reducing Emissions from Deforestation 

and Forest Degradation (UN-REDD), is the most 

prominent example. The programme sought to integrate 

forest conservation into climate mitigation and 

development planning. While it represented an important 

policy step, evaluations have identified limitations related 

to data quality, monitoring capacity, and long-term 

sustainability. Other initiatives, including mangrove 

conservation projects in the Niger Delta, have 

incorporated elements of carbon management but remain 

limited in spatial coverage and methodological 

consistency (United Nations Development Programme, 

2014). 

Nigeria’s national forest monitoring and carbon 

accounting systems continue to face structural challenges. 

These include fragmented data sources, reliance on 

periodic field inventories, and limited integration of 

continuous satellite-based indicators. In many cases, 

forest cover change, climate variables, and carbon 

estimation are treated as separate components rather than 

interconnected processes. This separation increases 

uncertainty in national carbon reporting and weakens 

Nigeria’s capacity to effectively access REDD+, PES, and 

emerging carbon market opportunities (Griscom et al., 

2020; Forest Carbon Partnership Facility [FCPF], 2022). 

Recent studies emphasize the value of integrating 

forest structure, productivity, and climate indicators to 

improve carbon accounting accuracy. Net Primary 

Productivity (NPP), derived from Moderate Resolution 

Imaging Spectroradiometer (MODIS) data, has become an 

important indicator of carbon sequestration potential. 

NPP reflects both vegetation growth and climatic 

influences on plant productivity (Running et al., 2004). 

When combined with forest loss datasets such as the 

Hansen Global Forest Change product, NPP provides a 

dynamic perspective on carbon losses and gains over time. 

However, few studies have applied this integrated 

approach within West African or Nigerian forest 

ecosystems using scalable cloud-based platforms, leaving 

a significant gap in regional forest carbon assessment. 

This study addresses these gaps by introducing a 

climate-informed, satellite-based framework for forest 

carbon assessment in Nigeria. Using Google Earth Engine, 

we integrate annual forest loss detection, vegetation 

productivity proxies, and key climate variables, including 

land surface temperature and rainfall, to generate 

spatially explicit insights into forest carbon dynamics. By 

situating forest carbon accounting within a broader 

climatic context, we enhance the accuracy and policy 

relevance of carbon estimates while demonstrating a 

scalable approach suitable for national-level monitoring. 

Beyond its technical contributions, this work arrives at 

a critical juncture for Nigeria's climate commitments. As 

the country seeks to strengthen its Nationally Determined 

Contributions and expand participation in results-based 

climate finance, robust, transparent, and climate-sensitive 

carbon accounting systems become essential. The 

approach presented here contributes to this objective by 

bridging methodological gaps between forest monitoring, 

climate analysis, and carbon estimation. It offers evidence-

based insights for policymakers, researchers, and climate 

finance stakeholders while responding to growing calls 
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for integrated, data-driven solutions that align ecological 

integrity with climate mitigation and sustainable 

development goals in tropical forest regions. 

Therefore, this study aims to integrate forest carbon 

accounting with climate drivers to inform climate-resilient 

strategies in Nigeria and to identify gaps in national 

monitoring tools. Specific objectives include: 

i. Quantify forest carbon loss from 2001 to 2023 using 

satellite data. 

ii. Examine spatial and temporal carbon flux patterns 

in relation to land surface temperature and 

precipitation. 

iii. Assess vegetation dynamics via NDVI and NPP to 

contextualize carbon trends. 

iv. Discuss implications for monitoring systems and 

resilience strategies, including REDD+ and related 

mechanisms. 

2 Materials and Methods  

2.1 Study Area  

Nigeria exhibits one of the most diverse ecological 

gradients in West Africa, spanning approximately 923,768 

km² from the humid equatorial south to the semi-arid and 

arid north. This latitudinal variation creates distinct 

ecological/vegetation zones, primarily aligned parallel to 

the coast and influenced by rainfall patterns (decreasing 

from south to north), temperature, soil types, and human 

activities. The zones are classically defined by Keay (1949) 

and mapped nationally by FORMECU (1998), with minor 

variations in recent assessments. From south to north, the 

major ecological zones include: 

• Mangrove Swamp and Coastal Vegetation: Along 

the Atlantic coast and Niger Delta, featuring 

brackish-water mangroves (e.g., Rhizophora spp.) 

with stilt roots, high biodiversity, and significant 

carbon storage in wetlands, though threatened by 

pollution and erosion. 

• Freshwater Swamp Forest: Inland from mangroves, 

consisting of dense, seasonally flooded forests with 

species like Raphia palms and Mitragyna ciliata; 

these act as vital carbon-rich buffers but are often 

impenetrable. 

• Lowland Rainforest: Dense, evergreen multi-

layered tropical forests in the southwest and 

southeast (e.g., Cross River, Ogun states), with 

emergent trees >40 m, annual rainfall >2000 mm, and 

exceptional species diversity; historically the 

primary forest estate but heavily cleared. 

• Derived Savanna: A human-modified transitional 

zone north of the rainforest, now dominated by 

grasses, scattered trees, and secondary woodland 

due to past forest degradation. 

• Guinea Savanna (Southern and Northern variants): 

The largest zone in central Nigeria, with tall 

grasses, drought-resistant trees (e.g., Isoberlinia, 

Daniellia), and bimodal rainfall; it contains 

substantial forest remnants and supports 

agriculture/livestock. 

• Sudan Savanna: Drier northern belt with shorter 

grasses, thorny acacias, and scattered trees; marks 

the shift to semi-arid conditions. 

• Sahel Savanna: The extreme northern fringe, with 

sparse vegetation, short grasses, and desert-like 

features; highly vulnerable to drought and 

desertification. 

Figure 1 provides a clear visual representation of these 

zones, illustrating the pronounced south-to-north 

transition from humid forest ecosystems to arid savannas. 

 
Figure 1: Overview of agro-ecological zones in Nigeria, 

highlighting the south-to-north transition. 

 

This analysis focused on over 950 forest polygons derived 

from Hansen’s Global Forest Change dataset (v1.11), 

prioritizing high-forest states such as Cross River 

(rainforest/montane), Ogun (rainforest/derived savanna), 

Taraba (Guinea savanna/montane), Niger (Guinea 

savanna), and others with significant forest estates. 

Nigeria's exceptionally high forest loss rate, exceeding 

400,000 hectares annually between 2000 and 2020 (Global 

Forest Watch, 2023), necessitates urgent scientific and 

policy action. Vulnerability to climate change, intensified 

by rapid population growth, agricultural expansion, and 

economic pressures, emphasizes the need for spatial 

carbon data. This is especially relevant to Nigeria's 

Nationally Determined Contributions (NDCs), targeting a 

20% unconditional and 45% conditional GHG reduction 

by 2030. 

Forest-dependent communities across these zones face 

declining livelihoods from degradation. Remote sensing 

integrated with climate variables enables real-time forest 
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health monitoring, supports local initiatives, improves 

transparency for international reporting, and paves the 

way for tools like green bonds and carbon-linked 

insurance. 

Moreover, communities in Nigeria that rely on forests 

are experiencing worsening livelihoods due to ecosystem 

degradation. Using remote sensing for carbon tracking 

along with climate factors can help monitor forest health in 

real time and support local initiatives. This strategy can 

also increase transparency in reporting to international 

climate finance systems and lay the groundwork for 

innovative funding tools like green bonds and carbon-

linked insurance. 

 

2.2 Methods  

This study employed a multi-source, satellite-based remote 

sensing approach to estimate forest carbon flux and 

analyze its interaction with climatic drivers, specifically 

precipitation, Normalized Difference Vegetation Index 

(NDVI), Land Surface Temperature (LST), and Net 

Primary Productivity (NPP) over 23 years spanning 2001 to 

2023. We implemented the analysis in the Google Earth 

Engine (GEE) cloud platform using globally available, pre-

processed geospatial datasets. The methodology integrates 

land cover change, carbon estimation models, vegetation 

health indices, and climate datasets. 

For assessing forest carbon loss, we utilized the Global 

Forest Change (GFC) v1.11 dataset by Hansen et al. (2023), 

specifically the annual loss year band, which provides 

yearly forest loss data from 2001 to 2023. We estimated 

carbon loss by combining forest loss area with assumed 

biomass and carbon fraction values. 

A significant limitation of the Hansen dataset warrants 

mention: the forest gain layer represents a cumulative 

binary indicator showing areas that experienced forest gain 

at any time between 2000 and 2012, rather than providing 

annual gain data. This constraint prevents yearly tracking 

of carbon gain using GFC data alone. 

To address this limitation, we introduced two 

productivity proxies: 

• Net Primary Production (NPP) from MODIS 

(MOD17A3HGF), representing annual biomass 

accumulation from 2001 to 2023 

• NDVI from MODIS (MOD13Q1), indicating 

vegetation greenness and photosynthetic activity, 

averaged annually from 2001 to 2022 

2.3 Data Sources and Acquisition 

All analysis was conducted using the JavaScript API of 

GEE. The primary datasets included: 

• Forest Cover Change: Hansen Global Forest Change 

v1.11. 30 m resolution (2001–2023) Hansen et al. 

(2013) 

• NDVI: MODIS (MOD13Q1), 16-day composites at 

250 m resolution (2001–2022) 

• LST: MODIS (MOD11A2), 8-day composites at 1 

km (2001–2023), converted from Kelvin to Celsius 

• Precipitation: Climate Hazards Group InfraRed 

Precipitation with Station data (CHIRPS) Funk et al. 

(2015) daily rainfall at 0.05° resolution (~5 km) 

(2001–2023) 

• Net Primary Productivity (NPP): MODIS 

MOD17A3HGF (2001–2023) 

• Administrative Boundaries: National and 

subnational (state-level) boundaries were obtained 

from the Federal Ministry of Environment (FME), 

Nigeria. These provided the geographic context for 

spatial aggregation and visualization. 

• Forest Reference Polygons: Official maps of forest 

estates and protected areas across Nigeria were also 

sourced from the Federal Ministry of Environment. 

These polygons formed the basis for zonal statistics, 

spatial analysis, and forest-level trend analysis. 

2.4 Data Pre-processing 

All raster datasets were clipped to the bounds of the forest 

FeatureCollection. Annual composites were generated to 

remove short-term variability and focus on long-term 

trends. 

• Forest loss and gain rasters were reclassified to 

binary values (1 = loss/gain; 0 = no change) to allow 

zonal statistics. 

• Precipitation and LST data were resampled to a 

common 1 km grid using bilinear interpolation. 

• Annual composites were generated for each 

variable (NDVI, precipitation, LST) to reduce 

seasonal noise. 

2.5 Forest Carbon Loss Estimation 

We estimated carbon loss annually using Hansen's forest 

loss year band, pixel-level area, and biomass assumptions. 

Each 30 m pixel received an aboveground biomass (AGB) 

value of 150 t/ha, drawn from regional African tropical 

forest averages (Saatchi et al., 2011; FAO, 2020). This 

provides a reasonable national-scale estimate for mixed 

biomes. We applied a carbon fraction of 0.47, the IPCC 

Tier 1 default for tropical forests (IPCC 2006 Guidelines, 

Vol. 4, Ch. 4). This conservative, widely used standard 

shows limited variability, typically ranging from 0.45 to 

0.50. 

Nigeria's ecological diversity (e.g., higher AGB in 

rainforest/mangrove ~156–200 t/ha vs. lower in savanna 

~50–120 t/ha from recent studies) may introduce some 
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uncertainty, potentially overestimating in drier zones and 

underestimating in wetter ones. However, this uniform 

approach aligns with common large-scale remote sensing 

practices where consistent, high-resolution zone-specific 

data are limited. 

Sensitivity analysis: Testing biomass levels of 120–180 

t/ha (spanning biome variability) yielded cumulative 

losses of 40.4–60.6 MtC (mean ~50.5 MtC), supporting the 

robustness of our primary estimate. Future work could 

adopt zone-stratified factors from Nigeria's REDD+ FREL 

or national inventories. 

The per-pixel carbon loss was computed as: 

 
Carbon loss (t/C) = pixel area (ha) ×  
biomass per hectares (t/ha) × carbon fraction (0.47) 

 

Annual carbon loss was then calculated by summing 

values where forest loss occurred in each year (2001–2023), 

using zonal statistics over the forest polygons. 

 

2.6  Mean Annual Carbon Loss per Hectare 

To normalize the loss across varying forest sizes, mean 

annual carbon loss per hectare was calculated by dividing 

annual carbon loss by the total forest area (in hectares) 

derived from the forest geometry. This provided a 

standardized carbon degradation indicator over time, 

enabling inter-annual and spatial comparisons. 

 

2.7 Time Series Analysis of Vegetation, Productivity, and 

Hydro-Climatic Proxies 

We assessed vegetation dynamics, productivity, and 

hydro-climatic variability using MODIS-derived indices 

and CHIRPS precipitation data to provide context for 

forest carbon trends. All analyses were performed in 

Google Earth Engine, with annual composites generated to 

minimize seasonal noise and focus on long-term patterns 

across forest estates. 

• Normalized Difference Vegetation Index (NDVI): 

MODIS MOD13Q1 data (16-day composites at 250 

m resolution) were used to evaluate vegetation 

greenness and photosynthetic activity. NDVI values 

were scaled by ×0.0001, and annual means were 

computed for the period from 2001 to 2022. Declines 

in NDVI served as proxies for ecosystem 

degradation or climatic stress. 

• Net Primary Productivity (NPP): Annual NPP data 

from MODIS (MOD17A3HGF) were used as a proxy 

for carbon sequestration capacity. NPP values 

(originally in kg C/m²/year) were converted to 

tonnes C/ha/year using: 

NPP (tC/ha/year) = MODIS NPP × 0.0001 × 10.... 

This allowed direct comparison with forest loss 

estimates, offering a continuous productivity-based 

perspective on forest condition. 

• Land Surface Temperature (LST) – LST was 

derived from MODIS Aqua (MOD11A2) 8-day 

composites, converted from Kelvin to Celsius 

using: LST (°C) = (value × 0.02) – 273.15.. Annual 

means were computed for each year from 2001 to 

2023, highlighting long-term warming trends over 

forest zones. 

• Precipitation Trends: Daily CHIRPS precipitation 

data (0.05° resolution) were summed to annual 

totals and averaged over forest regions for each 

year from 2001 to 2023. This offered insights into 

hydro-climatic variability and its potential 

influence on forest carbon dynamics. 

 

2.8 Statistical Analysis 

To examine linear relationships between annual forest 

carbon loss and key climate/vegetation variables (Land 

Surface Temperature [LST], Normalized Difference 

Vegetation Index [NDVI], Net Primary Productivity 

[NPP], and precipitation), we computed Pearson's 

correlation coefficients (r) using annual mean values for 

the period 2001–2023 (n = 23 years; df = 21). 

Pearson's correlation coefficient is a widely used 

parametric statistic that quantifies both the strength and 

direction of the linear association between two continuous 

variables. It ranges from -1 to +1: 

The coefficient is calculated using the formula: r = 

cov(X, Y) / (σ_X × σ_Y), where cov is the covariance 

between X and Y, and σ is the standard deviation. 

 

2.9 Data Integration and Visualization 

• All variables were harmonized on an annual basis. 

• Trends were visualized using line charts within 

GEE’s ui.Chart module. 

• Values were exported to CSV for further 

interpretation and plotting where necessary. 

• Spatial outputs were visualized in GEE and ArcGIS 

for clarity and presentation.  

 

 

 

 

 

3 Results and Discussion 

3.1 National Forest Carbon Loss (2001–2023) 

From 2001 to 2023, Nigeria's forests lost a cumulative total 
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of approximately 50.46 MtC. Annual carbon losses ranged 

from a low of 568,790 tC in 2004 to a peak of 4,745,912 tC in 

2022, reflecting a significant acceleration in forest 

degradation over time. Notably, five of the seven highest 

loss years occurred between 2018 and 2023, highlighting an 

intensification of deforestation in the most recent decade, 

as shown in Figure 2. 

 

 
Figure 2: Annual Carbon Loss Trend 

 

Beyond total carbon loss, the mean annual carbon loss per 

hectare, a measure of degradation severity within forested 

areas, also exhibited a sharp rise. This metric increased 

from 0.045 tC/ha in 2004 to 0.374 tC/ha in 2022, with an 

overall average of 0.173 tC/ha/year over the 23 years. This 

upward trend in per-hectare loss suggests that not only are 

forests shrinking in area, but the remaining patches are also 

being degraded more intensively. 

Figure 3 visually represents the total carbon lost in 

tonnes of CO₂ equivalent (tCO₂e) per forest polygon, 

accumulated between 2001 and 2023. The color gradient 

emphasizes increasing levels of emissions due to 

deforestation, following this logic:  Green indicates areas 

with little to no detected carbon loss, orange highlights 

areas with moderate biomass loss, and red signifies 

hotspots of severe deforestation, where forests have 

emitted over 2000 tonnes of carbon. 

 

 
Figure 3: Cumulative Carbon Loss per Forest 

 

These findings align with satellite-based assessments by 

Baccini et al. (2017) and Saatchi et al. (2011), which 

documented extensive carbon loss across African tropical 

forests, often outpacing any regrowth or natural 

regeneration. Nigeria’s pattern of rising total and per-

hectare carbon losses underscores the dual challenge of 

forest area reduction and internal ecosystem degradation. 

This adds urgency to the country’s forest conservation 

efforts and highlights the need for robust forest 

monitoring, protection, and restoration interventions. 

 

3.2 Land Surface Temperature (LST) Trends (2004–2024) 

Figure 4 shows that the trend in the mean annual LST over 

forested regions ranged from 31.31 °C in 2004 to a peak of 

33.37 °C in 2021. Though there was a slight cooling in 2022 

(32.43 °C), the long-term trend reflects warming of over 

2 °C since the early 2000s. This long-term warming trend 

is quantitatively supported by the moderate positive 

correlation between annual carbon loss and LST (r = 0.62, 

p < 0.01; see Table 1), confirming that elevated 

temperatures are statistically associated with accelerated 

forest degradation across the study period. 

These findings support studies such as Ayanlade et al. 

(2018) and Akinsanola & Zhou (2020), which observed 

significant warming trends in Nigeria’s southern 

ecological zones. The temperature rise also mirrors the 

IPCC AR6 regional assessment for West Africa, which 

projects more frequent heat stress and altered vegetation 

regimes. The 2°C increase is consistent with long-term 

trends reported by the Nigerian Meteorological Agency 

(NIMET), indicating that warming contributes to 

vegetation stress and increased evapotranspiration. 

 

 
Figure 4: Annual Mean LST 

 

3.3 NDVI and Vegetation Response (2001–2022) 

The mean NDVI presented in Figure 5 reflects vegetative 

greenness, which ranged from 0.438 in 2001 to a peak of 

0.479 in 2019. The NDVI declined slightly after 2020, 

reaching 0.458 in 2022. 

Years with the lowest NDVI, such as 2015 (0.439) and 

2022 (0.458), coincide with some of the highest carbon loss 

years. This supports an inverse relationship between 

vegetation health and forest degradation. This qualitative 

observation of an inverse relationship is quantitatively 

confirmed by the Pearson correlation analysis (r = -0.58, p 

< 0.01) in Table 1. While short-term NDVI recoveries 

occurred (e.g., 2019), they were not sustained, 

highlighting ongoing forest stress. 
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Figure 5: Annual Mean NDVI and Vegetation Response 

 

 

This aligns with findings from Ayanlade et al. (2018) and 

Saatchi et al. (2011), who demonstrated the link between 

vegetation greenness and forest integrity using NDVI-

based assessments. Furthermore, NDVI trends have been 

validated as a proxy for biomass change and forest 

condition across West Africa by IPCC (2021). 

 

3.4 Precipitation Variability (2004–2024) 

Annual precipitation ranged from 1,141 mm (2013) to 1,440 

mm (2019) as depicted in Figure 6. Despite these 

fluctuations, wet years such as 2018–2019 did not coincide 

with major drops in carbon loss, indicating that rainfall 

alone does not buffer forests from human-driven 

degradation. This is confirmed statistically in Table 1 by the 

weak, non-significant correlation between carbon loss and 

precipitation (r = -0.22, p > 0.05), showing that rainfall 

fluctuations explain little of the forest degradation 

compared to human factors. 

 

 
Figure 6: Annual Mean Precipitation 

 

This pattern between precipitation and forest loss mirrors 

the findings of Bonan (2008), which suggest that 

anthropogenic pressures often override natural climate 

variability. Similar rainfall variability has been reported by 

Anyadike (2009) and Ezenwaji et al. (2016), especially 

delayed rainy season onset in southern Nigeria. 

 

3.5 NPP Trends and Ecosystem Productivity (2001–2023) 

Net Primary Productivity (NPP) in Nigeria’s forests ranged 

from 2.85 tC/ha in 2021 to 3.97 tC/ha in 2012, averaging ~3.5 

tC/ha/year over the study period. Notably low NPP values 

in 2017 and 2021, as shown in Figure 7, coincided with peak 

carbon loss years, suggesting that declining productivity 

may reflect the combined impact of deforestation and 

climate stress. This observed pattern of declining 

productivity coinciding with elevated carbon loss is 

quantitatively supported by the moderate negative 

correlation between annual carbon loss and NPP (r = -0.51, 

p < 0.05) as shown in Table 4.1, reinforcing the role of 

reduced ecosystem productivity in diminishing forest 

carbon sink capacity. This trend implies a weakening 

carbon sink capacity and aligns with MODIS-based 

observations of declining tropical forest productivity 

globally (Zhao & Running, 2010). 

These findings support broader research linking NPP 

declines to land-use change and warming trends in 

tropical regions (Pan et al., 2011; Grace et al., 2014). 

Reduced NPP also indicates impaired forest regeneration 

and soil fertility, echoing FAO (2020) reports that fewer 

than 10% of Nigerian forests show signs of active 

regrowth. Without effective reforestation and protection, 

ecosystem productivity may continue to degrade, 

undermining Nigeria’s forest-based climate resilience. 

 

 
Figure 7: Annual Mean NPP 

 

3.6 Top Forests by Carbon Dynamics 

Among forests with the highest carbon gains, Okomu 

topped the list (454,409 tonnes), followed by Sapoba 

(205,114 tC) and Obaretin (116,739 tC). However, these 

forests also recorded substantial losses: Okomu (1.32 

million tC), Sapoba (1.47 million tC). Forests like Oluwa, 

Ekiadolor, and Usonigbe also reflect this gain-loss duality. 

Conversely, forests such as Okpara (3.1 million tC loss, 

<1,000 tC gain) and River Moshi (2.14 million tC loss, 

negligible gain) indicate alarming degradation as shown 

in Figures 8 and 9, respectively. 

 

 
Figure 8: Top 10 Forests by Carbon Loss (and their Gain)  

 

These mixed patterns align with observations from 

Ezebilo and Mattsson (2010), who found that forest 
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management regimes influence carbon fluxes in Nigeria. 

Their study of Cross River forests revealed that 

enforcement inconsistencies result in adjacent forest blocks 

exhibiting divergent degradation rates. 

 

 

 
Figure 9: Top 10 Forests by Carbon Loss (and their Gain)  

 

 

3.7 Correlations between annual forest carbon loss and 
selected variables 

Table 1: Pearson correlation coefficients (r) between annual 
forest carbon loss and selected variables (2001–2023; n = 
23, df = 21) 

Variable  
Pair 

Pearson 
r 

Direction 
p-
value 

Significance 

Carbon Loss vs. 
LST 

0.62 Positive ↑ < 0.01 
Highly 
significant 

Carbon Loss vs. 
NDVI 

-0.58 
Negative 
↓ 

< 0.01 
Highly 
significant 

Carbon Loss vs. 
NPP 

-0.51 
Negative 
↓ 

< 0.05 Significant 

Carbon Loss vs. 
Precipitation 

-0.22 
Negative 
(weak) ↓ 

> 0.05 
Not 
significant 

 

The Pearson correlations shown in Table 1 reveal 

meaningful patterns in the relationships between annual 

forest carbon loss and the examined variables over the 23 

years. A moderate positive correlation exists between 

carbon loss and Land Surface Temperature (LST) (r = 0.62, 

p < 0.01), indicating that periods of higher surface 

temperatures are associated with increased carbon 

emissions from forest degradation. This suggests that 

warming may intensify stress factors such as drought, 

evapotranspiration, or fire susceptibility in Nigerian 

forests. 

In contrast, moderate negative correlations are 

observed with vegetation greenness (NDVI; r = -0.58, p < 

0.01) and productivity (NPP; r = -0.51, p < 0.05). These 

inverse relationships imply that declines in photosynthetic 

activity and biomass accumulation are linked to higher 

rates of carbon loss, consistent with reduced ecosystem 

health and diminished carbon sequestration capacity 

under combined climatic and anthropogenic pressures. 

Precipitation shows only a weak and non-significant 

negative association (r = -0.22, p > 0.05), suggesting that 

hydro-climatic variability alone does not strongly explain 

national-scale carbon loss trends. This highlights the 

predominant role of other drivers, such as land-use 

change and deforestation, in recent forest dynamics. These 

results show the synergistic effects of rising temperatures 

and declining vegetation productivity in accelerating 

forest carbon emissions, while rainfall appears to offer 

limited buffering at the aggregated scale. 

 

4 Discussion 

4.1 Forest Carbon Loss, Human Pressure, and Climate 
Interaction 

The carbon losses we observed across Nigerian forests 

cannot be attributed to climatic variability alone; they're 

fundamentally driven by sustained anthropogenic 

pressure. The weak and statistically insignificant 

relationship between precipitation variability and carbon 

loss suggests something important: forest degradation in 

Nigeria doesn't primarily stem from hydro-climatic 

factors. Instead, it's linked to land-use change, logging, 

agricultural expansion, and fuelwood extraction. Rising 

land surface temperatures and declining vegetation 

productivity appear to function as amplifiers rather than 

initiators of forest carbon loss. They intensify degradation 

once canopy disturbance has already occurred. 

This interaction merits close attention. While climate 

stress alone may not explain forest loss, elevated surface 

temperatures more than 2°C over two decades reduce 

post-disturbance recovery potential. They do this by 

suppressing net primary productivity and increasing 

evapotranspirative stress. In degraded forests like Okpara 

and River Moshi, this feedback loop likely accelerates 

transitions from closed forest to fragmented or savanna-

like states, diminishing long-term sequestration capacity. 

Similar dynamics have been documented in degraded 

tropical forests in Central Africa and the Amazon, where 

anthropogenic disturbance lowers resilience to warming 

and drought (Baccini et al., 2017; Hubau et al., 2020). 

In contrast, relatively resilient systems like Okomu and 

Oluwa demonstrate that forest structure and governance 

matter significantly. These areas maintain higher 

productivity despite regional warming, suggesting that 

intact canopy cover, effective management regimes, and 

lower disturbance levels can buffer climatic stress. This 

divergence reinforces an important point: interventions 

should be targeted spatially rather than relying on 

uniform national strategies. 

 

4.2 Implications for Climate Finance and Carbon Markets 

From a climate finance perspective, the findings highlight 

both opportunities and constraints. Nigeria’s forest 

carbon losses represent a significant mitigation liability, 

but also a potential entry point into results-based climate 

finance mechanisms, provided emissions can be credibly 

reduced. Systematic, geospatial monitoring that integrates 
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forest change, productivity, and climate stress is a 

prerequisite for participation in performance-based 

mechanisms such as Reducing Emissions from 

Deforestation and Forest Degradation (REDD+) and 

voluntary carbon markets (VCMs). 

Recent market data indicate that high-integrity nature-

based credits, those with strong additionality, permanence 

safeguards, and transparent monitoring, were trading 

largely between USD 15–26 per tCO₂e in late 2025, with 

premium projects occasionally exceeding this range. 

However, market confidence has become increasingly 

selective, penalizing projects with weak baselines, poor 

leakage control, or governance risks. For Nigeria, this 

implies that carbon finance is not automatic: without 

robust Monitoring, Reporting, and Verification (MRV) 

systems and clear land tenure arrangements, projected 

revenues may not materialize. 

Payment for Ecosystem Services (PES) schemes offer a 

complementary pathway, particularly at subnational and 

community scales. Evidence from Costa Rica, Ethiopia, 

Kenya, and the Democratic Republic of Congo 

demonstrates that PES can stabilize forest cover when 

payments are predictable and linked to local livelihoods. In 

Nigeria, however, PES implementation faces institutional 

barriers, including unclear benefit-sharing frameworks 

and limited legal recognition of community forest rights. 

These challenges suggest that PES expansion must advance 

cautiously and incrementally, anchored in pilot-scale 

success rather than rapid national rollout. 

 

4.3 Policy Relevance and Implementation Constraints 

Nigeria’s Climate Change Act (2021), revised National 

Forest Policy (2020), and updated Nationally Determined 

Contributions provide an enabling policy framework, but 

implementation gaps remain substantial. The absence of a 

centralized national carbon registry and harmonized MRV 

protocols limits Nigeria’s readiness for large-scale results-

based payments. While recent green bond issuances (2025) 

and announcements of a national climate finance facility 

indicate growing political momentum, translating finance 

into durable forest outcomes will require institutional 

coordination across federal, state, and local levels. 

An important point deserves emphasis: carbon finance 

shouldn't prioritize only high-performing forests. While 

resilient areas are attractive for low-risk investment, 

degraded hotspots represent the greatest potential for 

mitigation enhancement. A balanced portfolio combining 

protection of resilient forests with restoration and avoided 

degradation in high-risk zones offers the most credible 

pathway for both emissions reduction and ecosystem 

recovery. 

Scalable platforms such as Google Earth Engine provide 

a practical solution to Nigeria’s data constraints, enabling 

continuous monitoring at relatively low cost. However, 

satellite-based systems must be complemented by ground 

validation, social safeguards, and governance reforms to 

ensure credibility and equity. 

 

5 Conclusion 

This study presents a comprehensive, climate-informed 

assessment of forest carbon dynamics in Nigeria from 2001 

to 2023, revealing sustained and accelerating carbon losses 

driven primarily by anthropogenic pressures rather than 

hydro-climatic variability. Declining vegetation 

productivity, rising land surface temperatures, and 

spatially concentrated degradation hotspots indicate that 

Nigeria’s forests are experiencing a progressive erosion of 

both carbon stocks and recovery potential. 

By integrating satellite-derived forest loss with Net 

Primary Productivity and vegetation health indicators, 

this study advances beyond static carbon accounting 

approaches and provides a dynamic perspective on net 

carbon flux. The framework addresses key limitations of 

existing datasets and demonstrates the value of 

productivity-based proxies for annual monitoring, 

particularly in data-limited contexts. While uncertainties 

remain related to biomass assumptions, spatial resolution, 

and exclusion of soil carbon, the approach offers a scalable 

and transparent foundation for national Monitoring, 

Reporting, and Verification systems. 

The findings carry clear implications for Nigeria’s 

climate commitments. Continued forest degradation 

threatens biodiversity, rural livelihoods, and the 

credibility of national mitigation targets. At the same time, 

spatial differentiation between resilient and highly 

stressed forests offers an evidence base for targeted 

intervention. Aligning these biophysical insights with 

performance-based mechanisms such as REDD+, carefully 

designed Payment for Ecosystem Services schemes, and 

climate-aligned green bonds could unlock meaningful 

finance, but only if institutional, governance, and MRV 

challenges are addressed. 

Ultimately, reversing Nigeria’s forest carbon trajectory 

will require more than data alone. It demands coordinated 

policy action, community engagement, and sustained 

investment grounded in credible science. By 

demonstrating how open satellite data and cloud-based 

analytics can inform climate-resilient forest governance, 

this study contributes a practical pathway toward 

integrating carbon accounting, climate adaptation, and 

sustainable development in Nigeria. 
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