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1 Introduction 

Nigeria, as a developing nation, faces intense pressure on 

its urban infrastructure due to rapid and often unplanned 

urban growth. The United Nations (2019) projects that the 

African urban population will double in 2050, triggering 

more stress on existing infrastructure systems of cities, 

particularly in medium-sized cities, of which Osogbo is 

an example. Informal settlements have had urbanisation 

that surpasses that of critical infrastructure development 

that has caused inefficiencies and inequalities in service 

delivery to a great extent. The predicaments are not 

peculiar to Nigeria but rather belong to a wider tendency 

that involves urban centres in the Global South in which 

urbanization is taking place at a speed that is far faster 

than governments’ planning and execution of sustainable 

infrastructure systems (Cohen, 2006). 

Sustainable urban planning and management are 

based on accurate and timely mapping of urban 

infrastructure. An essential tool in this regard has turned 

out to be remote sensing, which can be divided into the 

optical and microwave (Radar) categories of satellite 

sensors. Reflected solar radiation in different spectral 

bands, recorded by optical sensors such as Landsat and 

Sentinel-2, enables the detailed classification of land 

cover based on its spectral signature (Herold et al., 2003). 

The biggest weakness of optical imagery is, however, that 

the cloud cover and weather conditions can pose a major   
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setback, especially in areas such as Nigeria, where it is 

mostly tropical. 

Synthetic Aperture Radar (SAR) systems, such as 

Sentinel-1A, actively transmit pulses of microwaves, and 

the signal reflected is observed. This will enable them to 

penetrate clouds and capture data during the day and 

night, which is available as a reliable data source even 

when there is bad weather (Brunner et al., 2010). SAR data 

is surface geometry, roughness, and moisture sensitive 

and therefore useful in a variety of applications. But it has 

not been used as extensively in the detailed classification 

of land cover in urban areas, as optical images, because it 

is not multispectral and thus cannot make easy 

differentiation between materials such as asphalt, 

concrete, and plants. 

Although some studies have investigated SAR 

application in urban mapping, including many studies 

where optical data are also used (Ban et al., 2015; 

Nwaezeigwe, 2018), there is a lack of direct and controlled 

comparisons specifically on the footprint of urban 

infrastructure (roads and buildings) in medium-sized 

cities in Africa.  These cities often have heterogeneous 

urban landscapes and limited resources, making choosing 

the most effective and efficient mapping technology a 

practical concern for local planners. 

This study addresses this gap by conducting a  
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systematic comparative analysis of Sentinel-1A (SAR) 

and Sentinel-2 (optical) imagery for the specific task of 

urban infrastructure footprint classification. The primary 

objective is to evaluate and compare the accuracy and 

effectiveness of these two widely available and free data 

sources in mapping roads and buildings in Osogbo, 

Nigeria. The findings will provide clear guidance to 

researchers and urban practitioners on the strengths and 

limitations of each dataset for urban applications in 

similar contexts. 

 

2 Materials and Methods 

2.1 Study Area 

The study was conducted using satellite images of 

Osogbo, Osun State, Nigeria. Osogbo is the capital of 

Osun State in southwestern Nigeria. It is strategically 

located 80 kilometres to the northeast of Ibadan and 200 

kilometres to the northeast of Lagos. The geographical 

context of Osogbo is approximately between latitude 

7°46′N and 8°16′N, and longitude 4°34′E and 4°56′E, as 

shown in Figure 1. Osogbo is located within the region of 

southwest Nigeria, where there is a concentration of great 

cultural and economic activities, and thus contributes to 

the relevance of Osogbo as a case study for such an 

analysis in Nigeria and medium-sized cities in sub-

Saharan Africa. The city’s population is estimated at 

772,000, owing to a consistent increase in the population 

(Macrotrends, 2023). Osogbo had a population of 250,951 

in 1991 (National Population Commission of Nigeria, 

1991) and, with an annual urban growth rate of 3.15%, 

soared to 772,000 in 2023. This has resulted in a dynamic 

urban landscape through rural to urban migration and 

natural increase of population in the city. 

 

 

 
Figure 1: Map of the Study Area 

 

Osogbo features a tropical wet and dry climate (Aw) 

according to the Koppen-Geiger classification. The city 

experiences warm temperatures year-round, with 

average highs ranging from 28° in August to 33°C in 

March. Annual precipitation averages approximately 

1,361 mm, with the wet season extending from April to 

October. Topographically, Osogbo is situated at an 

average elevation of 328 meters (1,076 feet) above sea 

level, with elevations ranging between 285 meters (935 

feet) and 390 meters (1,280 feet). The terrain is 

characterized by undulating lowlands interspersed with 

hills and inselbergs, which are prominent in the region. 

The city is primarily drained by the Osun River, which 

flows through Osogbo and continues southward. 

Osogbo urban area has a blend of traditional and 

modern elements. The Osun Osogbo Sacred Grove is part 

of UNESCO World Heritage and is integral to the city’s 

cultural identity. Osun Osogbo festival is one of the 
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biggest art festivals in Nigeria, with over 235, 518 tourist 

visits in 2014 (Orga, 2016). 

By contrast, Osogbo is a unique and compelling case 

to study the urban infrastructure footprints as it 

juxtaposes the ancient cultural heritage with the modern 

urban development. The city economy is diversified with 

a blend of traditional crafts, small-scale industries, 

agriculture, and commerce. The economic diversity has 

an impact on the nature of infrastructure that is needed 

to support the population and where it must be located.  

Osogbo’s urban infrastructure is complex, with the 

presence of educational and healthcare institutions as 

well. The incidence of Osogbo's urbanization and growth 

in its population provides a perfect study area to 

investigate urban infrastructure footprint, especially due 

to rapid urbanization and population growth. 

Furthermore, the land use within Osogbo is diverse and 

includes densely populated urban centres as well as less 

developed peri-urban areas with which to investigate 

various types of urban infrastructure. This diversity can 

therefore help in understanding the different urban needs 

and challenges taking place in various urban zones.  

2.2 Data Collection 

The data used for this comparative analysis included 

Sentinel-1A SAR and Sentinel-2 MSI, as shown in Table 1. 

 

 
Table 1: Remote sensing datasets used for comparing SAR and optical imagery in mapping urban infrastructure in 
Osogbo, Nigeria 

Sensor Data Product Acquisition 
Date(s) 

Number of 
Images 

Spatial 
Resolution 

Polarization / 
Bands Used 

Data Source 

Sentinel-
1A SAR 

GRD, 
Interferometric 
Wide (IW) swath 
mode 

15 January 
2023; 27 
January 2023 

2 scenes 10 m VV and VH 
polarization 

Copernicus 
Open Access 
Hub via Google 
Earth Engine 

Sentinel-2 
MSI 

Level-2A 
(Bottom-of-
Atmosphere 
reflectance) 

18 January 
2023 

1 scene 10 m (B2, B3, 
B4, B8); 20 m 
(B11, B12) 

Visible, NIR, 
and SWIR 
bands 

Google Earth 
Engine (ESA 
Sentinel-2 
archive) 

 

This study adopted a minimal-image, seasonally 

consistent approach to enable a robust comparison of 

Synthetic Aperture Radar (SAR) and optical imagery for 

urban infrastructure mapping in Osogbo, Nigeria. 

Images were deliberately selected from the dry season 

(January 2023) to minimize vegetation cover, atmospheric 

interference, and surface moisture variability, all of which 

can obscure built-up features and confound sensor 

comparison. Sentinel-1A and Sentinel-2 acquisitions were 

temporally matched within a narrow window (±3 days) 

to ensure that observed differences in urban feature 

detection are attributable primarily to intrinsic sensor 

characteristics such as wavelength, polarization, and 

spectral response rather than temporal land-cover 

changes. The limited number of images enhances 

interpretability and reproducibility while remaining 

sufficient for evaluating the relative strengths and 

limitations of SAR and optical data in urban 

infrastructure mapping. To ensure a fair comparison, 

primary data (Ground Control Points) and secondary 

data (training and validation shapefiles) were kept 

identical for both classifications. 

2.3 Data Preprocessing 

Sentinel-2 (Optical): The Level-2A product was used, 

which incorporates atmospheric correction. The image 

was cloud-masked and resampled to a 10m resolution for 

analysis. 

Sentinel-1A (SAR): Preprocessing in GEE included 

radiometric calibration and conversion of backscatter 

values to decibels (dB). A temporal median composite was 

created to reduce noise. To enhance the feature space for 

classification, SAR-derived indices were computed: The 

Normalized Difference Polarization Index (NDPI) and the 

VV/VH ratio. Speckle filtering was not explicitly applied 

before classification; however, the Random Forest (RF) 

classifier is known for its robustness to noisy and high-

dimensional input data, which can help mitigate some of 

the effects of speckle in SAR imagery. RF has been widely 

used for land-cover and urban classification using SAR 

data without prior speckle filtering, demonstrating 

acceptable classification performance even when speckle 

noise remains in the input features (Jamali & 

AbdulRahman, 2019; Balzter et al., 2015; Gašparović & 

Dobrinić, 2021). Specifically, RF’s ensemble decision-tree 

structure helps reduce the impact of random variations 

and noise on classification outcomes, and prior studies 

have successfully applied RF to unfiltered Sentinel-1 data 

for urban and land-cover mapping tasks, indicating its 

utility in handling SAR speckle to a degree. 

 

RADAR Imagery Preprocessing 

The preprocessing of Sentinel-1A Synthetic Aperture 

Radar (SAR) data in this study focuses on preparing the 

imagery for classification and analysis while 

acknowledging certain implicit preprocessing steps. The 
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Sentinel-1A Ground Range Detected (GRD) collection in 

Google Earth Engine (GEE) already includes preliminary 

but comprehensive terrain correction, which meets the 

research needs for geometric accuracy. Additionally, the 

random forest classifier used in this study will inherently 

compensate for some preprocessing steps, such as 

speckle filtering. The following are the pre-processing 

steps used in preparing the Sentinel-1A image for the 

analysis. 
 

Data Selection and Filtering 

To ensure the selection of high-quality SAR data, the 

preprocessing begins by filtering the Sentinel-1A GRD 

collection based on specific criteria such as Date 

(filterDate -'2023-01-01', '2023-12-31') to ensure the data 

collected was relevant to the study. The dataset is limited 

to images acquired within the study area boundaries, 

covering the entire year of 2023. Only images captured in 

Interferometric Wide (IW) swath mode are considered, as 

this mode provides high-resolution data suitable for land 

cover analysis. The preprocessing also selects images 

with dual-polarization (VV and VH), which enhances the 

ability to distinguish different land cover types. To 

maintain consistency, only ascending orbit passes were 

included. This ensures that all images have a similar 

acquisition geometry, reducing variations caused by 

differences in viewing angles. 
 

Radiometric Calibration and Conversion to Decibels 

After filtering, the SAR backscatter values were 

calibrated and converted into decibels (dB) units, a 

standard transformation for SAR analysis. This step 

involves applying a logarithmic transformation (log10) to 

the VV and VH bands, followed by scaling the values by 

a factor of 10. The transformation enhances the 

interpretability of backscatter intensities, making it easier 

to differentiate land cover types. To reduce noise and 

enhance the stability of the dataset, a temporal median 

composite was applied across the selected images. This 

process mitigates short-term variations caused by 

atmospheric effects, sensor noise, and minor land surface 

changes, producing a more reliable dataset for 

classification. 
 

Computation of SAR-Derived Indices 

In addition to the VV and VH backscatter bands, two 

SAR-derived indices were computed to improve 

classification accuracy. The Normalized Difference 

Polarization Index (NDPI) was calculated using the 

difference between VV and VH backscatter values. This 

index enhances the differentiation between vegetation 

and built-up surfaces. Additionally, the VV/VH ratio was 

computed to provide further insight into land cover 

characteristics. These indices are then added as 

additional bands to the dataset, thereby enriching the 

feature space for classification. 

Final Pre-processed Dataset 

The final processed SAR dataset consists of four bands: 

VV_dB: VV polarization in decibels 

VH_dB: VH polarization in decibels 

NDPI: Normalized Difference Polarization Index 

Ratio: VV/VH ratio 

By integrating these preprocessing steps, the Sentinel-1A 

SAR imagery is prepared for classification, ensuring a 

balance between computational efficiency and data 

accuracy.  

2.4 Image Classification and Accuracy Assessment 

Supervised classification was performed using a Random 

Forest (RF) classifier in Google Earth Engine. For Sentinel-

2, the input features included spectral bands (Visible, NIR, 

SWIR) and derived indices (NDVI, NDBI). Training 

samples were extracted from a vector “FeatureCollection” 

labeled by landcover, with 31,997 building points, 2,207 

road points, 10 waterway points, 136 natural vegetation 

points, and 76 bare ground points. Samples were drawn at 

10 m resolution, and the RF classifier was trained with 500 

decision trees, using default GEE settings. For Sentinel-

1A, the input features were the VV and VH bands in dB, 

along with the computed NDPI and Ratio indices. 

The classification scheme comprised five classes: 

Roads, Buildings, Vegetation, Water Bodies, and Bare 

Ground. An identical set of training samples was used to 

train the RF classifier for both images. The classification 

output was then validated against an independent set of 

ground truth points. Error matrices were generated for 

both the Sentinel-2 and Sentinel-1A classifications to 

compute overall accuracy, producer's accuracy, user's 

accuracy, and the Kappa coefficient. 

The analysis of the extracted urban footprints required 

an accuracy assessment, which will validate the extracted 

urban infrastructure footprints. This is enabled through 

GEE generation of confusion matrices for optical and 

radar-based classifications. Depending on ground truth 

data acquired from both imagery and field surveys, one 

can compute metrics such as overall accuracy by 

comparing these classifications. These metrics give a 

quantitative measure of whether the classifications are a 

true representation of reality. GEE’s platform provides 

and compares large datasets, enabling an efficient 

validation of large datasets that highlight the robust 

accuracy assessment of optical and RADAR imagery in 

urban footprint processing. 

Figure 2 shows the workflow, which represents how 

the data collected was manipulated to achieve the study 

objectives. The objectives of analysing and validating 

urban infrastructure footprints were accomplished as seen 

in the workflow using GEE as a comprehensive and 

efficient platform. Its ability to deal with large datasets, 

perform complex spatial analysis, and combine datasets 

makes it a very useful tool in urban infrastructure studies. 
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Figure 2: Methodology Workflow 
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3 Results and Discussion 

3.1 Classification Accuracy  

Figures 3a and b show Sentinel-1 and Sentinel-2 images, 

while Figures 4 a and b show a classified image of 

Sentinel-1 and Sentinel-2. 

 

 

 

 

 

 

 

 

 
a)  b)  

Figure 3: a) VV and VH from Sentinel -1, b) Sentinel-2 Image of the study area 

 
   

 

 

 
Figure 4: Classification result of a) SAR (sentinel -1) image, and b) Sentinel -2 image 
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Table 2 shows a comparative accuracy assessment of 

Sentinel-2 and Sentinel-1A classifications. The 

comparative analysis revealed a significant disparity in 

classification performance between the two sensors. 

 
Table 2: Producer’s Accuracy Assessment of Sentinel-2 
and Sentinel-1A Classifications 

Class Sentinel-1A User’s 
Accuracy (%) 

Sentinel-2 User’s 
Accuracy (%) 

Roads 46.26 100.00 
Buildings 75.36 99.86 
Water 
bodies 

49.22 99.86 

Vegetation 76.21 100.00 
Bare 
Ground 

91.75 99.90 

Overall 
Accuracy 

67.24 99.93 

Kappa 
Coefficient 

0.568 0.999 

 

The Sentinel-2 classification achieved near-perfect 

accuracy, demonstrating its high capability for detailed 

urban land cover mapping. In stark contrast, the Sentinel-

1A classification yielded only moderate accuracy, with a 

Kappa value indicating fair agreement beyond chance. 

The effectiveness of SAR imagery in urban classification 

is influenced by surface characteristics such as roughness, 

moisture content, and structural properties. These factors 

can vary significantly with time and seasonal changes, 

which in turn can affect the radar backscatter and lead to 

inconsistencies in classification. For example, wet or 

highly reflective surfaces might be misclassified as water 

bodies or vegetation. These variations underscore the 

difficulty in achieving consistent classification results 

using SAR alone. SAR data’s ability to penetrate cloud 

cover and provide day/night imaging is one of its 

strengths. However, this advantage is tempered by its 

difficulty in identifying detailed urban structures. Unlike 

optical imagery, which can resolve fine structural details, 

SAR data may struggle with distinguishing between 

different types of buildings or accurately identifying 

specific land uses within urban areas. This limitation may 

reduce the utility of Sentinel-1A for detailed urban land 

use classification. 

In contrast to the limitations of Sentinel-1A, Sentinel-

2 offers multispectral optical data that allows for clearer 

differentiation between urban land cover types. Sentinel-

2’s ability to capture a broader spectrum of light 

(including visible, near-infrared, and shortwave infrared 

bands) enhances its capacity to distinguish between 

different surfaces. For instance, vegetation can be 

identified through the Normalized Difference Vegetation 

Index (NDVI), and built-up areas are more easily 

delineated using the Normalized Difference Built-Up 

Index (NDBI) as implemented for the optical image’s 

classification in the study. This higher spectral 

discrimination allows for a more accurate classification of 

urban areas, making Sentinel-2 better suited for detailed 

urban analysis compared to Sentinel-1A. 

 

3.2 Analysis of Sentinel-1A Classification Errors 

The error matrix for the Sentinel-1A classification 

provided insight into the sources of error. There was 

substantial confusion between urban feature classes. For 

instance: 

• A significant number of "Road" pixels were 

misclassified as "Buildings" (160 out of 428 actual 

road points). 

• "Buildings" were also frequently confused with 

"Roads" (105 out of 483 actual building points). 

• Misclassification also occurred between "Vegetation" 

and other classes, and "Water Bodies" were often 

confused with "Vegetation." 

 

This confusion arises because different materials (e.g., 

concrete buildings and asphalt roads) can produce similar 

radar backscatter responses based on their surface 

roughness and orientation relative to the sensor. The lack 

of distinct spectral signatures, which are readily available 

in optical imagery, is a fundamental limitation for detailed 

urban classification using SAR alone. 

 

4 Discussion 

The results of this study unequivocally demonstrate the 

superior performance of Sentinel-2 optical imagery over 

Sentinel-1A SAR for the specific task of mapping detailed 

urban infrastructure footprints. The 99.93% accuracy 

achieved by Sentinel-2 is attributable to its high spatial 

resolution (10m) and, more importantly, its rich spectral 

information. Indices like NDVI and NDBI provide 

powerful means to separate vegetation from built-up 

areas, while the varying reflectance of materials in the 

visible and infrared spectrum allows for clear 

discrimination between roads, buildings, and bare soil. 

SAR backscatter intensity is influenced not only by 

target characteristics but also by environmental 

conditions and imaging geometry. Variations in soil and 

vegetation moisture affect the dielectric properties of 

surfaces, typically increasing backscatter with higher 

moisture content due to greater reflectivity of microwave 

radiation. Seasonal timing and weather-related 

conditions, such as rain or frozen surfaces, can introduce 

radiometric uncertainty in σ⁰ values if not accounted for 

or masked, thereby impacting the reliability of SAR 

measurements (Benninga et al., 2019). Additionally, 

surface roughness and structure strongly modulate 

backscatter; rougher surfaces tend to scatter energy more 

diffusely, while smooth surfaces show lower returns, and 

both spatial variability and temporal changes in 
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roughness can introduce significant errors in derived 

SAR metrics (Álvarez-Mozos et al., 2009). The imaging 

incidence angle further alters backscatter; steeper angles 

generally reduce backscatter intensity, whereas 

variations in incidence angle across a scene can change 

how surfaces appear due to geometric effects and local 

slope differences, affecting interpretation and 

classification outcomes. 

The modest 67.24% accuracy of the Sentinel-1A 

classification highlights the inherent challenges of using 

SAR data for this purpose. SAR backscatter is influenced 

by factors such as surface roughness, dielectric 

properties, and sensor geometry, which are not unique to 

specific urban land cover classes. A smooth concrete roof 

and an asphalt road can have very similar backscatter 

characteristics, leading to the high confusion observed 

between the "Roads" and "Buildings" classes. This finding 

aligns with studies noting the complexity of urban SAR 

interpretation (Brunner et al., 2010). 

The comparison between Sentinel-2 optical data and 

Sentinel-1 radar data clearly identifies the fact that radar 

data is restrictive concerning urban classification at the 

level of detail. Sentinel-1A possesses cloud-penetrating 

capabilities and texture-based features, but due to its 

reliance on backscatter signals, a significant 

misclassification was observed, achieving only 67.24% 

overall accuracy. This is relatively good due to the 

spectral properties of Radar; it is notably lower than the 

99.93% accuracy achieved with Sentinel-2. It relates the 

challenges associated with processing urban features in 

radar to the ability of spectral indices like NDVI or NDBI, 

available in optical data, but not in Radar. Sentinel-1 and 

Sentinel-2 data integration in a multisensory fusion 

framework may enable such future analyses to exploit the 

strengths of both datasets (Nagendra et al., 2013). By 

combining this approach with state-of-the-art machine 

learning algorithms, the classification accuracy could 

potentially be increased, and it could give us more 

reliable insights for urban planning and urban 

infrastructure management. 

The practical implication for urban researchers and 

planners is clear: for standalone, high-accuracy mapping 

of urban infrastructure in a single timeframe, Sentinel-2 

is the unequivocal choice. However, to dismiss Sentinel-

1A would be short-sighted. Its all-weather, day-night 

capability is its greatest asset. In regions with persistent 

cloud cover, Sentinel-1A can fill critical data gaps. 

Therefore, the most robust methodological approach is 

not to choose one over the other, but to integrate them. 

Future work should focus on developing multi-sensor 

data fusion techniques that leverage the spectral richness 

of Sentinel-2 and the all-weather reliability of Sentinel-

1A. Such an approach would be ideal for time-series 

analysis, change detection, and continuous monitoring of 

urban growth in challenging environments, ensuring data 

continuity even during cloudy seasons  

 

5 Conclusion 

This study provides a rigorous empirical comparison of 

Sentinel-1A SAR and Sentinel-2 optical imagery for urban 

infrastructure mapping. We conclude that while Sentinel-

1A is a powerful tool for all-weather observation, its 

standalone application for detailed urban footprint 

classification is hampered by significant spectral 

confusion, resulting in moderate accuracy. Sentinel-2 

optical imagery is dramatically more effective for this task, 

achieving near-perfect classification results due to its 

multispectral capabilities. For urban studies requiring 

high thematic accuracy, Sentinel-2 should be the primary 

data source; however, the strategic path forward lies in 

developing integrated methodologies that combine the 

complementary strengths of both sensors to achieve 

resilient and continuous urban monitoring. 

Sentinel-2 optical imagery outperformed Sentinel-1A 

SAR in mapping urban infrastructure, achieving 99.93% 

accuracy due to its high spatial resolution and spectral 

richness, which allow clear discrimination between 

buildings, roads, vegetation, and bare soil using indices 

like NDVI and NDBI. Sentinel-1A achieved only 67.24% 

accuracy, as its backscatter is influenced by surface 

roughness, dielectric properties, and imaging geometry, 

confusing spectrally similar classes. While SAR provides 

all-weather, day-night imaging and texture-based 

features, it lacks the spectral discrimination of optical 

data. These differences highlight that Sentinel-2 is best for 

detailed urban mapping, whereas Sentinel-1A is suited for 

complementary applications, suggesting multi-sensor 

integration to leverage the strengths of both. 

As suggested in Nwaezeigwe et al. (2021), leveraging 

complementary data sources and geospatial techniques 

enhances the accuracy and applicability of urban studies 

for planning and environmental management. For 

instance, integrating texture measures and spectral 

indices, as demonstrated in this study, improves the 

delineation of urban-rural boundaries and supports 

evidence-based policy-making. Moreover, the observed 

patterns reinforce the importance of preserving urban 

vegetation for ecological balance and climate regulation, 

echoing global calls for sustainable urban planning (UN-

Habitat, 2020). 

Sentinel-1A offers useful information for urban 

analysis, but also exhibits limiting aspects in terms of 

discriminability, separately, based on texture, as well as 

the lack of separability of classes, so it is advisable to apply 

the latter in conjunction with optical information collected 

by Sentinel-2. These challenges can be overcome by using 

a multisensory fusion approach along with advanced 

machine learning methods in order to increase 
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classification accuracy. In the end, the combined use of 

Sentinel-1A and Sentinel-2 data will produce better and 

more accurate urban land cover mapping that is more 

suitable for the purposes of urban planning and 

infrastructure management. 
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