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ABSTRACT

The choice of remote sensing data is critical for accurate urban mapping, particularly in regions
with frequent cloud cover. This study evaluates and compares the capacity of Synthetic Aperture
Radar (SAR) from Sentinel-1A and multispectral optical imagery from Sentinel-2 for mapping urban
infrastructure footprints in Osogbo, Nigeria. Using the Google Earth Engine platform, we
performed a supervised classification for the year 2023 on both datasets using a Random Forest
classifier. Identical training and validation data were used for both classifications to ensure a
robust comparison. The results demonstrated a stark contrast in performance. The classification
based on Sentinel-2 optical imagery achieved an exceptionally high overall accuracy of 99.93%
(Kappa = 0.999), effectively distinguishing between roads, buildings, vegetation, water, and bare
ground. In contrast, the Sentinel-1A SAR-based classification achieved a moderate overall
accuracy of 67.24% (Kappa = 0.568). The error matrix for the SAR classification revealed significant
mixed classification, particularly between roads and buildings, and between certain urban
features and vegetation. The study concludes that while Sentinel-1A offers all-weather capability,
its utility for detailed urban infrastructure classification is limited when used independently due
to its reliance on backscatter and texture, which lack the rich spectral information of optical
sensors. For precise urban footprint mapping in studies of medium-sized cities, Sentinel-2 is vastly
superior. However, the complementary all-weather capability of Sentinel-1A suggests that a
synergistic multi-sensor fusion approach would be the most effective strategy for continuous urban
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monitoring in tropical regions.

1 Infroduction

Nigeria, as a developing nation, faces intense pressure on
its urban infrastructure due to rapid and often unplanned
urban growth. The United Nations (2019) projects that the
African urban population will double in 2050, triggering
more stress on existing infrastructure systems of cities,
particularly in medium-sized cities, of which Osogbo is
an example. Informal settlements have had urbanisation
that surpasses that of critical infrastructure development
that has caused inefficiencies and inequalities in service
delivery to a great extent. The predicaments are not
peculiar to Nigeria but rather belong to a wider tendency
that involves urban centres in the Global South in which
urbanization is taking place at a speed that is far faster
than governments’ planning and execution of sustainable
infrastructure systems (Cohen, 2006).

Sustainable urban planning and management are
based on accurate and timely mapping of urban
infrastructure. An essential tool in this regard has turned
out to be remote sensing, which can be divided into the
optical and microwave (Radar) categories of satellite
sensors. Reflected solar radiation in different spectral
bands, recorded by optical sensors such as Landsat and
Sentinel-2, enables the detailed classification of land
cover based on its spectral signature (Herold et al., 2003).
The biggest weakness of optical imagery is, however, that
the cloud cover and weather conditions can pose a major

setback, especially in areas such as Nigeria, where it is
mostly tropical.

Synthetic Aperture Radar (SAR) systems, such as
Sentinel-1A, actively transmit pulses of microwaves, and
the signal reflected is observed. This will enable them to
penetrate clouds and capture data during the day and
night, which is available as a reliable data source even
when there is bad weather (Brunner et al., 2010). SAR data
is surface geometry, roughness, and moisture sensitive
and therefore useful in a variety of applications. But it has
not been used as extensively in the detailed classification
of land cover in urban areas, as optical images, because it
is not multispectral and thus cannot make easy
differentiation between materials such as asphalt,
concrete, and plants.

Although some studies have investigated SAR
application in urban mapping, including many studies
where optical data are also used (Ban et al, 2015;
Nwaezeigwe, 2018), there is a lack of direct and controlled
comparisons specifically on the footprint of urban
infrastructure (roads and buildings) in medium-sized
cities in Africa. These cities often have heterogeneous
urban landscapes and limited resources, making choosing
the most effective and efficient mapping technology a
practical concern for local planners.

This study addresses this gap by conducting a
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systematic comparative analysis of Sentinel-1A (SAR)
and Sentinel-2 (optical) imagery for the specific task of
urban infrastructure footprint classification. The primary
objective is to evaluate and compare the accuracy and
effectiveness of these two widely available and free data
sources in mapping roads and buildings in Osogbo,
Nigeria. The findings will provide clear guidance to
researchers and urban practitioners on the strengths and
limitations of each dataset for urban applications in
similar contexts.

2 Materials and Methods

2.1 Study Area

The study was conducted using satellite images of
Osogbo, Osun State, Nigeria. Osogbo is the capital of
Osun State in southwestern Nigeria. It is strategically
located 80 kilometres to the northeast of Ibadan and 200

kilometres to the northeast of Lagos. The geographical
context of Osogbo is approximately between latitude
7°46'N and 8°16'N, and longitude 4°34'E and 4°56'E, as
shown in Figure 1. Osogbo is located within the region of
southwest Nigeria, where there is a concentration of great
cultural and economic activities, and thus contributes to
the relevance of Osogbo as a case study for such an
analysis in Nigeria and medium-sized cities in sub-
Saharan Africa. The city’s population is estimated at
772,000, owing to a consistent increase in the population
(Macrotrends, 2023). Osogbo had a population of 250,951
in 1991 (National Population Commission of Nigeria,
1991) and, with an annual urban growth rate of 3.15%,
soared to 772,000 in 2023. This has resulted in a dynamic
urban landscape through rural to urban migration and
natural increase of population in the city.
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Figure 1: Map of the Study Area

Osogbo features a tropical wet and dry climate (Aw)
according to the Koppen-Geiger classification. The city
experiences temperatures
average highs ranging from 28° in August to 33°C in
March. Annual precipitation averages approximately
1,361 mm, with the wet season extending from April to
October. Topographically, Osogbo is situated at an

warm year-round, with

average elevation of 328 meters (1,076 feet) above sea
level, with elevations ranging between 285 meters (935

feet) and 390 meters (1,280 feet).
characterized by undulating lowlands interspersed with
hills and inselbergs, which are prominent in the region.
The city is primarily drained by the Osun River, which
flows through Osogbo and continues southward.

Osogbo urban area has a blend of traditional and
modern elements. The Osun Osogbo Sacred Grove is part
of UNESCO World Heritage and is integral to the city’s
cultural identity. Osun Osogbo festival is one of the

The terrain is



biggest art festivals in Nigeria, with over 235, 518 tourist
visits in 2014 (Orga, 2016).

By contrast, Osogbo is a unique and compelling case
to study the urban infrastructure footprints as it
juxtaposes the ancient cultural heritage with the modern
urban development. The city economy is diversified with
a blend of traditional crafts, small-scale industries,
agriculture, and commerce. The economic diversity has
an impact on the nature of infrastructure that is needed
to support the population and where it must be located.
Osogbo’s urban infrastructure is complex, with the
presence of educational and healthcare institutions as
well. The incidence of Osogbo's urbanization and growth
in its population provides a perfect study area to
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investigate urban infrastructure footprint, especially due
to rapid wurbanization and population growth.
Furthermore, the land use within Osogbo is diverse and
includes densely populated urban centres as well as less
developed peri-urban areas with which to investigate
various types of urban infrastructure. This diversity can
therefore help in understanding the different urban needs
and challenges taking place in various urban zones.

2.2 Data Collection
The data used for this comparative analysis included
Sentinel-1A SAR and Sentinel-2 MSI, as shown in Table 1.

Table 1: Remote sensing datasets used for comparing SAR and optical imagery in mapping urban infrastructure in

Osogbo, Nigeria

Sensor Data Product Acquisition Number of  Spatial Polarization / Data Source
Date(s) Images Resolution Bands Used

Sentinel- GRD, 15 January 2 scenes 10 m VV and VH Copernicus

1A SAR Interferometric 2023; 27 polarization Open Access
Wide (IW) swath  January 2023 Hub via Google
mode Earth Engine

Sentinel-2  Level-2A 18 January 1 scene 10 m (B2, B3, Visible, NIR, Google Earth

MSI (Bottom-of- 2023 B4,B8); 20m  and SWIR Engine (ESA
Atmosphere (B11,B12) bands Sentinel-2
reflectance) archive)

This study adopted a minimal-image, seasonally Sentinel-1A (SAR): Preprocessing in GEE included

consistent approach to enable a robust comparison of
Synthetic Aperture Radar (SAR) and optical imagery for
urban infrastructure mapping in Osogbo, Nigeria.
Images were deliberately selected from the dry season
(January 2023) to minimize vegetation cover, atmospheric
interference, and surface moisture variability, all of which
can obscure built-up features and confound sensor
comparison. Sentinel-1A and Sentinel-2 acquisitions were
temporally matched within a narrow window (+3 days)
to ensure that observed differences in urban feature
detection are attributable primarily to intrinsic sensor
characteristics such as wavelength, polarization, and
spectral response rather than temporal land-cover
changes. The limited number of images enhances
interpretability and reproducibility while remaining
sufficient for evaluating the relative strengths and
of SAR and optical data
infrastructure mapping. To ensure a fair comparison,
primary data (Ground Control Points) and secondary
data (training and validation shapefiles) were kept
identical for both classifications.

limitations in urban

2.3 Data Preprocessing

Sentinel-2 (Optical): The Level-2A product was used,
which incorporates atmospheric correction. The image
was cloud-masked and resampled to a 10m resolution for
analysis.

radiometric calibration and conversion of backscatter
values to decibels (dB). A temporal median composite was
created to reduce noise. To enhance the feature space for
classification, SAR-derived indices were computed: The
Normalized Difference Polarization Index (NDPI) and the
VV/VH ratio. Speckle filtering was not explicitly applied
before classification; however, the Random Forest (RF)
classifier is known for its robustness to noisy and high-
dimensional input data, which can help mitigate some of
the effects of speckle in SAR imagery. RF has been widely
used for land-cover and urban classification using SAR
data without prior speckle filtering, demonstrating
acceptable classification performance even when speckle
noise remains in the input features (Jamali &
AbdulRahman, 2019; Balzter et al., 2015; GaSparovi¢ &
Dobrini¢, 2021). Specifically, RF’s ensemble decision-tree
structure helps reduce the impact of random variations
and noise on classification outcomes, and prior studies
have successfully applied RF to unfiltered Sentinel-1 data
for urban and land-cover mapping tasks, indicating its
utility in handling SAR speckle to a degree.

RADAR Imagery Preprocessing

The preprocessing of Sentinel-1A Synthetic Aperture
Radar (SAR) data in this study focuses on preparing the
imagery analysis
acknowledging certain implicit preprocessing steps. The

for classification and while
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Sentinel-1A Ground Range Detected (GRD) collection in
Google Earth Engine (GEE) already includes preliminary
but comprehensive terrain correction, which meets the
research needs for geometric accuracy. Additionally, the
random forest classifier used in this study will inherently
compensate for some preprocessing steps, such as
speckle filtering. The following are the pre-processing
steps used in preparing the Sentinel-1A image for the
analysis.

Data Selection and Filtering

To ensure the selection of high-quality SAR data, the
preprocessing begins by filtering the Sentinel-1A GRD
collection based on specific criteria such as Date
(filterDate -'2023-01-01', '2023-12-31") to ensure the data
collected was relevant to the study. The dataset is limited
to images acquired within the study area boundaries,
covering the entire year of 2023. Only images captured in
Interferometric Wide (IW) swath mode are considered, as
this mode provides high-resolution data suitable for land
cover analysis. The preprocessing also selects images
with dual-polarization (VV and VH), which enhances the
ability to distinguish different land cover types. To
maintain consistency, only ascending orbit passes were
included. This ensures that all images have a similar
acquisition geometry, reducing variations caused by
differences in viewing angles.

Radiometric Calibration and Conversion to Decibels
After (filtering, the SAR backscatter values were
calibrated and converted into decibels (dB) units, a
standard transformation for SAR analysis. This step
involves applying a logarithmic transformation (log10) to
the VV and VH bands, followed by scaling the values by
a factor of 10. The transformation enhances the
interpretability of backscatter intensities, making it easier
to differentiate land cover types. To reduce noise and
enhance the stability of the dataset, a temporal median
composite was applied across the selected images. This
process mitigates short-term variations caused by
atmospheric effects, sensor noise, and minor land surface
changes, producing a more reliable dataset for
classification.

Computation of SAR-Derived Indices

In addition to the VV and VH backscatter bands, two
SAR-derived
classification accuracy. The Normalized Difference
Polarization Index (NDPI) was calculated using the
difference between VV and VH backscatter values. This
index enhances the differentiation between vegetation
and built-up surfaces. Additionally, the VV/VH ratio was
computed to provide further insight into land cover
characteristics. These indices are then added as
additional bands to the dataset, thereby enriching the
feature space for classification.

indices were computed to improve

Final Pre-processed Dataset

The final processed SAR dataset consists of four bands:
VV_dB: VV polarization in decibels

VH_dB: VH polarization in decibels

NDPI: Normalized Difference Polarization Index

Ratio: VV/VH ratio

By integrating these preprocessing steps, the Sentinel-1A
SAR imagery is prepared for classification, ensuring a
balance between computational efficiency and data
accuracy.

2.4 Image Classification and Accuracy Assessment
Supervised classification was performed using a Random
Forest (RF) classifier in Google Earth Engine. For Sentinel-
2, the input features included spectral bands (Visible, NIR,
SWIR) and derived indices (NDVI, NDBI). Training
samples were extracted from a vector “FeatureCollection”
labeled by landcover, with 31,997 building points, 2,207
road points, 10 waterway points, 136 natural vegetation
points, and 76 bare ground points. Samples were drawn at
10 m resolution, and the RF classifier was trained with 500
decision trees, using default GEE settings. For Sentinel-
1A, the input features were the VV and VH bands in dB,
along with the computed NDPI and Ratio indices.

The classification scheme comprised five classes:
Roads, Buildings, Vegetation, Water Bodies, and Bare
Ground. An identical set of training samples was used to
train the RF classifier for both images. The classification
output was then validated against an independent set of
ground truth points. Error matrices were generated for
both the Sentinel-2 and Sentinel-1A classifications to
compute overall accuracy, producer's accuracy, user's
accuracy, and the Kappa coefficient.

The analysis of the extracted urban footprints required
an accuracy assessment, which will validate the extracted
urban infrastructure footprints. This is enabled through
GEE generation of confusion matrices for optical and
radar-based classifications. Depending on ground truth
data acquired from both imagery and field surveys, one
can compute metrics such as overall accuracy by
comparing these classifications. These metrics give a
quantitative measure of whether the classifications are a
true representation of reality. GEE’s platform provides
and compares large datasets, enabling an efficient
validation of large datasets that highlight the robust
accuracy assessment of optical and RADAR imagery in
urban footprint processing.

Figure 2 shows the workflow, which represents how
the data collected was manipulated to achieve the study
objectives. The objectives of analysing and validating
urban infrastructure footprints were accomplished as seen
in the workflow using GEE as a comprehensive and
efficient platform. Its ability to deal with large datasets,
perform complex spatial analysis, and combine datasets
makes it a very useful tool in urban infrastructure studies.
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Study Area Definition
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Figure 2: Methodology Workflow
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3 Results and Discussion

3.1 Classification Accuracy

Figures 3a and b show Sentinel-1 and Sentinel-2 images,
while Figures 4 a and b show a classified image of
Sentinel-1 and Sentinel-2.
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Figure 3: a) VV and VH from Sentinel -1, b) Sentinel-2 Image of the study area
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Figure 4: Classification result of a) SAR (sentinel -1) image, and b) Sentinel -2 image



Table 2 shows a comparative accuracy assessment of
Sentinel-1A The
comparative analysis revealed a significant disparity in
classification performance between the two sensors.

Sentinel-2 and classifications.

Table 2: Producer’s Accuracy Assessment of Sentinel-2
and Sentinel-1A Classifications

Class Sentinel-1A User’s Sentinel-2 User’s
Accuracy (%) Accuracy (%)

Roads 46.26 100.00

Buildings 75.36 99.86

Water 49.22 99.86

bodies

Vegetation 76.21 100.00

Bare 91.75 99.90

Ground

Overall 67.24 99,93

Accuracy

Kappa 0.568 0.999

Coefficient

The Sentinel-2
accuracy, demonstrating its high capability for detailed
urban land cover mapping. In stark contrast, the Sentinel-
1A classification yielded only moderate accuracy, with a
Kappa value indicating fair agreement beyond chance.

classification achieved near-perfect

The effectiveness of SAR imagery in urban classification
is influenced by surface characteristics such as roughness,
moisture content, and structural properties. These factors
can vary significantly with time and seasonal changes,
which in turn can affect the radar backscatter and lead to
inconsistencies in classification. For example, wet or
highly reflective surfaces might be misclassified as water
bodies or vegetation. These variations underscore the
difficulty in achieving consistent classification results
using SAR alone. SAR data’s ability to penetrate cloud
cover and provide day/night imaging is one of its
strengths. However, this advantage is tempered by its
difficulty in identifying detailed urban structures. Unlike
optical imagery, which can resolve fine structural details,
SAR data may struggle with distinguishing between
different types of buildings or accurately identifying
specific land uses within urban areas. This limitation may
reduce the utility of Sentinel-1A for detailed urban land
use classification.

In contrast to the limitations of Sentinel-1A, Sentinel-
2 offers multispectral optical data that allows for clearer
differentiation between urban land cover types. Sentinel-
2’s ability to capture a broader spectrum of light
(including visible, near-infrared, and shortwave infrared
bands) enhances its capacity to distinguish between
different surfaces. For instance, vegetation can be
identified through the Normalized Difference Vegetation
Index (NDVI), and built-up areas are more easily
delineated using the Normalized Difference Built-Up
Index (NDBI) as implemented for the optical image’s
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classification in the study. This higher spectral
discrimination allows for a more accurate classification of
urban areas, making Sentinel-2 better suited for detailed

urban analysis compared to Sentinel-1A.

3.2 Analysis of Sentinel-1A Classification Errors

The error matrix for the Sentinel-1A classification

provided insight into the sources of error. There was

substantial confusion between urban feature classes. For
instance:

e A significant number of "Road"
misclassified as "Buildings" (160 out of 428 actual
road points).

e '"Buildings" were also frequently confused with
"Roads" (105 out of 483 actual building points).

¢ Misclassification also occurred between "Vegetation"
and other classes, and "Water Bodies" were often

pixels were

confused with "Vegetation."

This confusion arises because different materials (e.g.,
concrete buildings and asphalt roads) can produce similar
radar backscatter responses based on their surface
roughness and orientation relative to the sensor. The lack
of distinct spectral signatures, which are readily available
in optical imagery, is a fundamental limitation for detailed
urban classification using SAR alone.

4 Discussion
The results of this study unequivocally demonstrate the
superior performance of Sentinel-2 optical imagery over
Sentinel-1A SAR for the specific task of mapping detailed
urban infrastructure footprints. The 99.93% accuracy
achieved by Sentinel-2 is attributable to its high spatial
resolution (10m) and, more importantly, its rich spectral
information. Indices like NDVI and NDBI provide
powerful means to separate vegetation from built-up
areas, while the varying reflectance of materials in the
visible and infrared spectrum allows for clear
discrimination between roads, buildings, and bare soil.
SAR backscatter intensity is influenced not only by
target characteristics but also by
conditions and imaging geometry. Variations in soil and
vegetation moisture affect the dielectric properties of

surfaces, typically increasing backscatter with higher

environmental

moisture content due to greater reflectivity of microwave

radiation.  Seasonal and weather-related
conditions, such as rain or frozen surfaces, can introduce
radiometric uncertainty in 0° values if not accounted for
or masked, thereby impacting the reliability of SAR
measurements (Benninga et al, 2019). Additionally,
surface roughness and structure strongly modulate
backscatter; rougher surfaces tend to scatter energy more
diffusely, while smooth surfaces show lower returns, and

both

timing

spatial variability and temporal changes in
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roughness can introduce significant errors in derived
SAR metrics (Alvarez-Mozos et al., 2009). The imaging
incidence angle further alters backscatter; steeper angles
generally reduce backscatter intensity, whereas
variations in incidence angle across a scene can change
how surfaces appear due to geometric effects and local
slope
classification outcomes.

The modest 67.24% accuracy of the Sentinel-1A
classification highlights the inherent challenges of using
SAR data for this purpose. SAR backscatter is influenced
by factors
properties, and sensor geometry, which are not unique to
specific urban land cover classes. A smooth concrete roof

and an asphalt road can have very similar backscatter

differences, affecting interpretation and

such as surface roughness, dielectric

characteristics, leading to the high confusion observed
between the "Roads" and "Buildings" classes. This finding
aligns with studies noting the complexity of urban SAR
interpretation (Brunner et al., 2010).

The comparison between Sentinel-2 optical data and
Sentinel-1 radar data clearly identifies the fact that radar
data is restrictive concerning urban classification at the
level of detail. Sentinel-1A possesses cloud-penetrating
capabilities and texture-based features, but due to its
reliance on  backscatter signals, a significant
misclassification was observed, achieving only 67.24%
overall accuracy. This is relatively good due to the
spectral properties of Radar; it is notably lower than the
99.93% accuracy achieved with Sentinel-2. It relates the
challenges associated with processing urban features in
radar to the ability of spectral indices like NDVI or NDBI,
available in optical data, but not in Radar. Sentinel-1 and
Sentinel-2 data integration in a multisensory fusion
framework may enable such future analyses to exploit the
strengths of both datasets (Nagendra et al., 2013). By
combining this approach with state-of-the-art machine
learning algorithms, the classification accuracy could
potentially be increased, and it could give us more
reliable insights for urban planning and urban
infrastructure management.

The practical implication for urban researchers and
planners is clear: for standalone, high-accuracy mapping
of urban infrastructure in a single timeframe, Sentinel-2
is the unequivocal choice. However, to dismiss Sentinel-
1A would be short-sighted. Its all-weather, day-night
capability is its greatest asset. In regions with persistent
cloud cover, Sentinel-1A can fill critical data gaps.
Therefore, the most robust methodological approach is
not to choose one over the other, but to integrate them.

Future work should focus on developing multi-sensor
data fusion techniques that leverage the spectral richness
of Sentinel-2 and the all-weather reliability of Sentinel-
1A. Such an approach would be ideal for time-series

analysis, change detection, and continuous monitoring of

urban growth in challenging environments, ensuring data
continuity even during cloudy seasons

§ Conclusion

This study provides a rigorous empirical comparison of
Sentinel-1A SAR and Sentinel-2 optical imagery for urban
infrastructure mapping. We conclude that while Sentinel-
1A is a powerful tool for all-weather observation, its
standalone application for detailed urban footprint
hampered by significant spectral
confusion, resulting in moderate accuracy. Sentinel-2
optical imagery is dramatically more effective for this task,

classification is

achieving near-perfect classification results due to its
multispectral capabilities. For urban studies requiring
high thematic accuracy, Sentinel-2 should be the primary
data source; however, the strategic path forward lies in
developing integrated methodologies that combine the
complementary strengths of both sensors to achieve
resilient and continuous urban monitoring.

Sentinel-2 optical imagery outperformed Sentinel-1A
SAR in mapping urban infrastructure, achieving 99.93%
accuracy due to its high spatial resolution and spectral
richness, which
buildings, roads, vegetation, and bare soil using indices
like NDVI and NDBI. Sentinel-1A achieved only 67.24%
accuracy, as its backscatter is influenced by surface

allow clear discrimination between

roughness, dielectric properties, and imaging geometry,
confusing spectrally similar classes. While SAR provides
all-weather, day-night imaging texture-based
features, it lacks the spectral discrimination of optical
data. These differences highlight that Sentinel-2 is best for
detailed urban mapping, whereas Sentinel-1A is suited for

and

complementary applications, suggesting multi-sensor
integration to leverage the strengths of both.

As suggested in Nwaezeigwe et al. (2021), leveraging
complementary data sources and geospatial techniques
enhances the accuracy and applicability of urban studies
for planning and environmental management. For
instance, integrating texture measures and spectral
indices, as demonstrated in this study, improves the
delineation of urban-rural boundaries and supports
evidence-based policy-making. Moreover, the observed
patterns reinforce the importance of preserving urban
vegetation for ecological balance and climate regulation,
echoing global calls for sustainable urban planning (UN-
Habitat, 2020).

Sentinel-1A  offers useful information for urban
analysis, but also exhibits limiting aspects in terms of
discriminability, separately, based on texture, as well as
the lack of separability of classes, so it is advisable to apply
the latter in conjunction with optical information collected
by Sentinel-2. These challenges can be overcome by using
a multisensory fusion approach along with advanced
in order to increase

machine learning methods



classification accuracy. In the end, the combined use of
Sentinel-1A and Sentinel-2 data will produce better and
more accurate urban land cover mapping that is more
suitable for the purposes of urban planning and
infrastructure management.
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