Geospatial Assessment of Forest Carbon Dynamics and Climate Drivers in Nigeria: Implications for Climate-Resilient Strategies

Authors

DOI:

https://doi.org/10.47514/kjg.2025.07.01.043

Keywords:

Forest Carbon Loss, Climate Variability, Remote Sensing, Climate Finance, Carbon Accounting

Abstract

This study investigates forest carbon dynamics in Nigeria and their interactions with climatic variability to support climate-resilient development. Leveraging satellite-derived data from 2001 to 2023, we quantified annual carbon loss using the Hansen Global Forest Change dataset and augmented the analysis with MODIS Net Primary Productivity (NPP) and Normalized Difference Vegetation Index (NDVI) as innovative proxies for carbon uptake and vegetation health, addressing the limitation of Hansen's non-annual gain data. The results show that approximately 50.5 million tonnes (tC) of carbon was lost, a mean per-hectare loss shifted from 0.045 tC/ha in 2004 to 0.374 tC/ha in 2022. NDVI and NPP revealed a steady decrease in 2016 and 2017, respectively, indicating diminished productivity. Land Surface Temperature (LST) rose above 34°C in 2021, intensifying stress, while precipitation showed high variability without a prevailing trend. Spatial hotspots included severe degradation in Okpara and River Moshi forests, with relative resilience in Okomu and Oluwa. The Pearson correlations established moderate links between carbon loss and rising LST (r = 0.62), decreasing NDVI (r = -0.58), and NPP (r = -0.51). These discoveries show the need for integrated monitoring and emphasize opportunities under REDD+ and related mechanisms for resilience-building.

References

Akinsanola, A. A., & Zhou, W. (2020). Projection of West African summer monsoon rainfall: A comparison of CMIP5 and CMIP6 models. Theoretical and Applied Climatology, 140(1), 255–270.

Angelsen, A., Martius, C., Sy, V. D., Duchelle, A. E., & Larson, A. M. (2018). Introduction: REDD+ enters its second decade.

Anyadike, R. N. C. (2009). Climate change and sustainable development in Nigeria: Conceptual and empirical issues. University of Nigeria, Nsukka, Department of Geography.

Arowolo, A. O., Deng, X., Olatunji, O. A., & Obayelu, A. E. (2018). Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Science of The Total Environment, 636, 597-609. https://doi.org/10.1016/j.scitotenv.2018.04.277

Ayanlade, A., Radeny, M., & Morton, J. F. (2018). Comparing smallholder farmers' perception of climate change with meteorological data: A case study from southwestern Nigeria. Weather and Climate Extremes, 22, 24–33.

Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., & Houghton, R. A. (2017). Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 358(6360), 230–234.

Bastin J-F, Finegold Y, Garcia C et al (2019) The global tree restoration potential. Science (80-) 365:76–79. https://doi.org/10.1126/science.aax0848

Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449.

Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. (2018). Classifying drivers of global forest loss. Science, 361(6407), 1108-1111. https://doi.org/10.1126/science.aau3445

Ezenwaji, E. E., Nwafor, J. C., & Ofoegbu, C. J. (2016). Changing rainfall characteristics in the Lower Niger River Basin. Hydrology Current Research, 7(3).

Ezebilo, E. E., & Mattsson, L. (2010). Economic value of ecotourism to local communities in Nigeria. Journal of Sustainable Development, 3(1), 51–60.

FAO. (2020). Global Forest Resources Assessment 2020: Main report. Rome: Food and Agriculture Organization of the United Nations.

Food and Agriculture Organization of the United Nations (FAO). (2020). Global forest resources assessment 2020: Main report. Rome: FAO. https://www.fao.org/forest-resources-assessment/en/

Forest Carbon Partnership Facility (2022). Forest Carbon Partnership Facility 2022 Annual Report. Retrieved from https://jaresourcehub.org/publications/forest-carbon-partnership-facility-2022-annual-report/

FORMECU. (1998). The assessment of vegetation and land use changes in Nigeria between 1976/78 and 1993/95. Federal Department of Forestry, Federal Ministry of Environment, Abuja, Nigeria

Global Forest Watch (2023). Global Forest Watch’s 2023 Tree Cover Loss Data Explained. Retrieved from https://www.globalforestwatch.org/blog/data-and-tools/2023-tree-cover-loss-data-explained/

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031

Grace, J., Mitchard, E., & Gloor, E. (2014). Productivity and carbon fluxes of tropical rainforests. Ecology and Evolution, 4(14), 2135–2145. https://doi.org/10.1002/ece3.1270

Grassi, G., Stehfest, E., Rogelj, J., Van Vuuren, D., Cescatti, A., House, J., Nabuurs, G. J., Rossi, S., Alkama, R., Viñas, R. A., Calvin, K., Ceccherini, G., Federici, S., Fujimori, S., Gusti, M., Hasegawa, T., Havlik, P., Humpenöder, F., Korosuo, A., . . . Popp, A. (2021). Critical adjustment of land mitigation pathways for assessing countries’ climate progress. Nature Climate Change, 11(5), 425-434. https://doi.org/10.1038/s41558-021-01033-6

Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., ... & Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44), 11645–11650.

Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., Daniels, A. K., Ewango, C. E., Fauset, S., Mukinzi, J. M., Sheil, D., Sonké, B., Sullivan, M. J., Sunderland, T. C., Taedoumg, H., Thomas, S. C., White, L. J., Abernethy, K. A., Adu-Bredu, S., . . . Zemagho, L. (2020). Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 579(7797), 80-87. https://doi.org/10.1038/s41586-020-2035-0

IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

IPCC. (2022). Summary for Policymakers. In H.-O. Pörtner, D. C. Roberts, E. S. Poloczanska, et al. (eds). Impacts, Adaptation, and Vulnerability. Cambridge University Press.

Keay, R. W. J. (1949). An outline of Nigerian vegetation. Government Printer.

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., ... & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. https://doi.org/10.1126/science.1201609

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004). A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. BioScience, 54(6), 547-560. https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2

Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T., Salas, W., ... & Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, 108(24), 9899–9904.

Zhao, M., & Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. science, 329(5994), 940-943. https://doi.org/10.1126/science.1192666

Downloads

Published

2026-01-01

Data Availability Statement

The satellite datasets and spatial layers used in this study were sourced from publicly accessible repositories via Google Earth Engine. Processed data and analysis outputs are available from the corresponding author on reasonable request.

How to Cite

Nnachi, N., Achegbulu, E. O., John-Nwagwu, H. O., Fwang’ar, P. B., & Donatus, D. C. (2026). Geospatial Assessment of Forest Carbon Dynamics and Climate Drivers in Nigeria: Implications for Climate-Resilient Strategies. Kaduna Journal of Geography, 7(1), 399-408. https://doi.org/10.47514/kjg.2025.07.01.043