Assessment of Hydroclimatic Trends and Water Availability Dynamics in Mubi North, Adamawa State, Nigeria

Authors

DOI:

https://doi.org/10.47514/kjg.2025.07.01.008

Keywords:

Hydroclimatic trends, Sen’s Slope, Water Availability

Abstract

Water availability in semi-arid regions is highly sensitive to fluctuations in climate and land-surface processes; however, the limited knowledge of long-term hydroclimatic behavior in northeastern Nigeria limits effective resource management. This work investigated four decades of hydroclimatic variability (1985-2024) in Mubi North, Adamawa State, exploring the interlinkages between temperature, precipitation, runoff, soil moisture, vapour pressure, and water deficit. Data were gathered from the Climate Engine website through the TerraClimate and GRIDMET datasets (~4-km resolution). Monthly records were summarized into annual means. Analyses used the Mann-Kendall trend test, Sen's slope estimator, and Pearson correlation to assess the trends and interdependencies. Among the more pronounced changes, minimum temperature increased by +0.41 °C per decade, runoff by +1.9 mm/year, soil moisture by +3.4 mm/year, and vapor pressure by +0.12 kPa per decade, with a reduction in water deficit by -2.6 mm/year, thus signalling an improvement in water availability despite ongoing warming. In addition, maximum temperature and precipitation increased insignificantly, at +0.09 °C per decade and +2.8 mm/year, respectively. Highly statistically significant positive correlations between precipitation, runoff, and soil moisture (r = 0.756-0.932, p < 0.001) confirm rainfall as the dominant driver of hydrology, while land-surface conditions affect storage and flow responses. Overall, this study has shown that Mubi North has undergone significant hydroclimatic transformation driven by warming, increased soil moisture, enhanced runoff, and reduced water stress. To ensure the continuation of such positive changes, this study prioritizes integrated land-water management that promotes soil moisture conservation through, for instance, agroforestry and mulching, erosion control, and climate-resilient agricultural planning supported by regular hydroclimatic monitoring and land-use studies to enhance adaptive water policies in semi-arid northeastern Nigeria.

References

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data, 5(1), 170191. https://doi.org/10.1038/sdata.2017.191

Abiodun, B. J., Adegoke, J., Abatan, A. A., Ibe, C. A., Egbebiyi, T. S., Engelbrecht, F., & Pinto, I. (2021). Potential impacts of climate change on extreme precipitation over Africa. Natural Hazards and Earth System Sciences, 21(3), 1215–1233. https://doi.org/10.5194/nhess-21-1215-2021

Adamu, I., Abdullahi, S., & Bello, A. (2024). Groundwater potential assessment for sustainable urban management in semi-arid northern Nigeria. Journal of Hydrology: Regional Studies, 52, 101456. https://doi.org/10.1016/j.ejrh.2024.101456

Adebayo, A. A., & Tukur, A. L. (1999). Adamawa State in maps. Paraclete Publishers.

Adebayo, A. A., & Tukur, A. L. (2022). Climate, relief, and hydrology of Adamawa State, Nigeria. In A. A. Adebayo (Ed.), Mubi region: A geographical synthesis (pp. 15–32). Paraclete Publishers.

Adebayo, A. A., Zemba, A. A., Ray, H. H., & Dayya, S. V. (2023). Climate change in Adamawa State, Nigeria: Evidence from agro-climatic parameters. Adamawa State University Journal of Scientific Research. https://adsujsr.adsu.edu.ng/wp-content/uploads/2023/12/4.-Climate-Change-in-Adamawa-State-Nigeria-Evidence-from-Agro-Climatic-Parameters.pdf

Akinbile, C. O., Ogunmola, O. O., & Olayanju, T. M. A. (2020). Assessment of hydrological responses to land use changes in semi-arid regions of Nigeria. Hydrology Research, 51(2), 343–357. https://doi.org/10.2166/nh.2020.044

Akinmayowa Shobo, A. (2025). Climate variability and agricultural productivity in Sudano-Sahelian Nigeria. Journal of Environmental Management, 356, 110452.

Akinyemi, F. O., & Orimoloye, I. R. (2023). Assessment of climate variability using satellite-based and reanalysis datasets over West Africa. Remote Sensing Applications: Society and Environment, 29, 100998. https://doi.org/10.1016/j.rsase.2022.100998

Alfa, M. I., Ajibike, M. A., Adie, D. B., & Mudiare, O. J. (2018). Assessment of the effect of land use/land cover changes on total runoff from Ofu River catchment in Nigeria. Journal of Degraded and Mining Lands Management, 5(3), 1161–1169. https://doi.org/10.15243/jdmlm.2018.053.1161

Alli, B., Bello, A., & Usman, M. (2019). Rainfall variability and trend analysis in Nigeria. Journal of Meteorology and Climate Science, 7(2), 45–58.

Berg, A., Lintner, B. R., Zeng, X., & Schubert, S. D. (2017). Soil moisture influence on seasonality and large-scale circulation in the West African monsoon. Journal of Climate, 30(7), 2477–2493. https://doi.org/10.1175/JCLI-D-15-0877.1

Brocca, L., et al. (2020). River flow prediction in data-scarce regions: Soil moisture as a key driver. Scientific Reports, 10(1), 12548. https://doi.org/10.1038/s41598-020-69470-5

Burrows, L. (2024, February 8). Temperatures are rising, soil is getting wetter—why? SEAS Harvard. https://seas.harvard.edu/news/2024/02/temperatures-are-rising-soil-getting-wetter why (seas.harvard.edu)

City Population. (2024). Mubi North (Local Government Area, Adamawa, Nigeria). Retrieved from https://www.citypopulation.de

Dembélé, M., Zwart, S. J., van der Zaag, P., & Griensven, A. (2020). Remote Sensing, 12(3), 403. https://doi.org/10.3390/rs12030403

Dwivedi, P., Mishra, A., & Singh, R. (2024). Hydroclimatic change impacts on agricultural systems in West Africa. Agricultural Systems, 211, 103728. https://doi.org/10.1016/j.agsy.2024.103728

Ferchichi, M., Dakhlaoui, H., & Dhahri, F. (2024). Hydro-climatic trends and water availability dynamics in semi-arid environments. Hydrology Research, 55(2), 241–256. https://doi.org/10.2166/nh.2024.213

Food and Agriculture Organization of the United Nations (FAO). (2021). The State of the World’s Land and Water Resources for Food and Agriculture – Systems at breaking point (SOLAW 2021). https://www.fao.org/3/cb7654en/cb7654en.pdf

Food and Agriculture Organization of the United Nations (FAO). (2023). Global water resources and management: A review of challenges and risks. https://www.fao.org/documents/card/en/c/cc5704en

Garba, T., & Udokpoh, A. (2023). Climate variability and temperature trends in northern Nigeria: Implications for agriculture. Journal of Environmental Science and Climate Change, 15(1), 23–35.

Hamed, K. H., & Rao, A. R. (1998). “A modified Mann-Kendall trend test for autocorrelated data.” Journal of Hydrology, 204(1-4), 182–196.

Han, D., Wang, J., & Li, X. (2019). Land use/cover change impacts on hydrological processes: A global review. Earth-Science Reviews, 198, 102946. https://doi.org/10.1016/j.earscirev.2019.102946

Huntington, J. L., Hegewisch, K. C., Daudert, B., Morton, C. G., Abatzoglou, J. T., McEvoy, D. J., & Erickson, T. A. (2017). Climate Engine: Cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding. Bulletin of the American Meteorological Society, 98(11), 2397–2410. https://doi.org/10.1175/BAMS-D-15-00324.1

Igwenyi, J. O., Nwofia, G. E., & Eze, E. (2024). Relationship between rainfall and soil moisture in Umudike, southeastern Nigeria. Nigerian Journal of Soil Science, 34(1), 45-58.

Igwenyi, P., et al. (2024). Evaluation of soil moisture in relation to climate variability across Umudike, southeastern Nigeria. International Journal of Hydrology, 14(3), 245–259. https://doi.org/10.15406/ijh.2024.14.00324

Intergovernmental Panel on Climate Change (IPCC). (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/

Kehinde, M. O., & Umar, A. T. (2021). Assessment of soil moisture storage in Nigeria using the climatic water budgeting approach. Ghana Journal of Geography, 13(1), 167–202. https://doi.org/10.4314/gjg.v13i1.9

Kendall, M. G. (1975). Rank correlation methods (4th ed.). Charles Griffin.

Lawal, J. O., Buba, F. N., & Awe-Peter, H. (2024). Assessment of the impact of land use and land cover change on the surface runoff of Hadejia River System, Kano, Nigeria. International Journal of Latest Technology in Engineering, Management & Applied Science, 13(5), 130–141.

Li, S., Sun, H., & Wang, J. (2022). Soil moisture variability and its response to climatic and land cover changes in semi-arid basins. Journal of Hydrology, 610, 127899. https://doi.org/10.1016/j.jhydrol.2022.127899

MacDonald, A. M., Bonsor, H. C., O’Dochartaigh, B. É., & Taylor, R. G. (2021). Environmental Research Letters, 16(4), 044012. https://doi.org/10.1088/1748-9326/abec9c

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245–259. https://doi.org/10.2307/1907187

Masih, I., Maskey, S., Mussá, F. E. F., & Trambauer, P. (2020). Hydrology and Earth System Sciences, 24(2), 1083–1109. https://doi.org/10.5194/hess-24-1083-2020

Nasara, M. A., Tanko, A. I., & Abubakar, S. (2025). Temperature trends and variability in northern Nigeria (1980-2023). Theoretical and Applied Climatology, 152(1-2), 1-15.

National Population Commission (NPC). (2006). Population and Housing Census of the Federal Republic of Nigeria: Adamawa State Priority Tables. Abuja: NPC.

Neto, J. P., & Souza, C. (2024). Land use as a driver of hydrological change in tropical savannas. Global Change Biology, 30(5), e17234. https://doi.org/10.1111/gcb.17234

Nigerian Meteorological Agency (NIMET). (2024). Seasonal climate prediction for Nigeria 2024 (pp. 1–45). https://nimet.gov.ng/wp-content/uploads/2024/02/SCP_2024.pdf

Nketia, K. A., Adebayo, A., & Olorunfemi, F. B. (2022). Soil moisture and runoff patterns in the Sahel and savannah zones of West Africa. Hydrological Sciences Journal, 67(1), 1-16.

Nkiaka, E., Bryant, R. G., & Dembélé, M. (2024). Quantifying Sahel runoff sensitivity to climate variability, soil moisture and vegetation changes using analytical methods. Hydrology, 11(5), 102. https://doi.org/10.3390/hydrology11050102

Ntekim, E. E., Akpan, G. E., & Idowu, T. J. (2021). Evaluating hydroclimatic variability and its effect on water availability in Northern Nigeria. Environmental Monitoring and Assessment, 193(2), 69. https://doi.org/10.1007/s10661-021-08844-7

Nwankwoala, H. O., & Udom, G. J. (2021). Hydrogeological and geomorphological characteristics of northeastern Nigeria. Journal of African Earth Sciences, 181, 104222. https://doi.org/10.1016/j.jafrearsci.2021.104222

Odiji, O. J., Oche, M., & Yusuf, L. (2023). Climate variability and its impact on soil moisture regimes in Northern Nigeria. Environmental Systems Research, 12(1), 58. https://doi.org/10.1186/s40068-023-00311-4

Okello, C., Adebayo, A., & Olorunfemi, F. B. (2024). Climate variability and hydrological responses in the Sahel region. Climate Research, 89(1), 1-16.

Oloruntade, A. J., Adebayo, A., & Olorunfemi, F. B. (2018). Groundwater recharge and surface water systems in semi-arid regions. Journal of Hydrology, 565, 432-443.

Oloruntade, A. J., Muhammad, I., & Salami, A. W. (2018). Assessing rainfall–runoff trends and variability in selected sub-basins of the Niger River Basin, Nigeria. Hydrology Research, 49(3), 924–938. https://doi.org/10.2166/nh.2017.125

Ren, D., et al. (2023). Rising trends of global precipitable water vapor and its implications. Geographical Research, ??(??), ??. https://doi.org/10.1016/j.geog.2022.12.001 (ScienceDirect)

Rodrigues, D. B., Gupta, H. V., & Mendiondo, E. M. (2021). Land cover controls on water balance in semi-arid regions. Water Resources Research, 57(8), e2021WR029847. https://doi.org/10.1029/2021WR029847

Sasanya, S., Adebayo, A., & Okeke, J. (2024). Sustainable water resource management in Nigerian agrarian regions. Sustainability, 16(5), 2156. https://doi.org/10.3390/su16052156

Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

Shah, H., Varghese, M., & Singh, R. (2021). Ecological sensitivity to hydroclimatic variability in semi-arid tropics. Ecological Indicators, 126, 107638. https://doi.org/10.1016/j.ecolind.2021.107638

Sheffield, J., et al. (2008). Global trends and variability in soil moisture and drought. Journal of Climate, 21(3), 432 458. https://doi.org/10.1175/2007JCLI1822.1 (journals.ametsoc.org)

Shi, P., et al. (2024). Runoff response to precipitation changes in semi-arid regions. Journal of Hydrology, 632, 131645. https://doi.org/10.1016/j.jhydrol.2024.131645

Shinggu, D., Gboko, F., & Idrisu, Y. (2022). Groundwater research for urban sustainability in northern Nigeria. Environmental Research Letters, 17(10), 104023. https://doi.org/10.1088/1748-9326/ac8e6a

Tanimu, B., Hamed, M. M., Bello, A. A. D., Abdullahi, S. A., Ajibike, M. A., & Shahid, S. (2024). Selecting the optimal gridded climate dataset for Nigeria using advanced time-series similarity algorithms. Environmental Science and Pollution Research, 31, 15986–16010. https://doi.org/10.1007/s11356-024-32128-0

Terassi, P. M., de Souza, B., & de Oliveira, P. T. (2024). Climate change impacts on extreme weather in West Africa. Nature Climate Change, 14(3), 234–245. https://doi.org/10.1038/s41558-024-01967-8

Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17–22. https://doi.org/10.1038/nclimate2067

Tukur, A. L., Ahmed, Y. M., & Adamu, I. A. (2020a). Vegetation cover change and land degradation assessment in northern Adamawa, Nigeria. Journal of Environmental Geography, 14(2), 45–58. https://doi.org/10.2478/jengeo-2020-0006

Wan, N., Lin, X., Pielke Sr., R. A., Zeng, X., & Nelson, A. M. (2022). Global total precipitable water variations and trends during 1958–2021. Hydrology and Earth System Sciences, 28(3), 2123 2140. https://doi.org/10.5194/hess-28-2123-2024 (hess.copernicus.org)

World Meteorological Organization (WMO). (2017). Guidelines on the calculation of climate normals (WMO-No. 1203). https://library.wmo.int/doc_num.php?explnum_id=4166

Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002). “The influence of autocorrelation on the ability to detect trend in hydrological series.” Hydrological Processes, 16(9), 1807–1829.

Zouré, C. O., Kiema, A., & Yonaba, R. (2023). Unravelling the impacts of climate variability on surface runoff in the Mouhoun River Catchment (West Africa). Land, 12(11), 2017. https://doi.org/10.3390/land12112017

Downloads

Published

2025-12-12

Data Availability Statement

The Data is in climateengine.org

How to Cite

Peter, Y. (2025). Assessment of Hydroclimatic Trends and Water Availability Dynamics in Mubi North, Adamawa State, Nigeria . Kaduna Journal of Geography, 7(1), 67-76. https://doi.org/10.47514/kjg.2025.07.01.008