Soil Organic Carbon Stock and Sequestration Potential in Southern Guinea Savanna Ecological Zone, Nigeria
DOI:
https://doi.org/10.47514/kjg.2025.07.01.029Keywords:
Climate Change, Mitigation, Soil Organic Carbon, Sequestration, SavannaAbstract
Carbon sequestration in soils has a huge potential to decrease the rate of CO2 emission to the atmosphere. However, little is known about Soil Organic Carbon (SOC) stock and fluxes in savannas. This study quantified the SOC of major plant communities in the southern guinea savanna ecological zone of Nigeria to determine their carbon sequestration potential for climate change mitigation. Field and laboratory procedures were employed to estimate carbon stock. Soil samples were collected by resampling from 40 permanent sampling plots for the years 2013, 2017, and 2021, respectively. Eighty composite soil samples were taken at two depths (0-15cm and 15-30cm). SOC concentration was estimated in the laboratory using the wet-oxidation Walkley-Black method. Findings revealed that between 2013 and 2021, the mean bulk density at 0–15 cm increased from 1.29 to 1.38 g cm-3, while at 15-30cm depth ranged from 1.30 to 1.36 g cm-3, signifying an increasing trend of soil compaction. Conversely, the mean SOC at 0–15 cm decreased from 20.11 to 14.06 Mg ha-1 while 15-30cm ranged from 15.84 to 11.92 Mg ha-1, implying carbon loss. The mean SOC concentration was mostly higher in the 0-15 cm layer than in the 15-30 cm layer. Savanna Woodland recorded the highest SOC (23.41 Mg ha-1) in 2013, while the Recent fallow land recorded the lowest (7.25 Mg ha-1) in 2021. Between 2013 and 2021, carbon emissions occurred at an annual loss rate of 8.87 Mg ha-1 yr-1. It was concluded that the restoration of the various plant communities has the potential to sequester about 79.84 Mg ha-1 of SOC at an annual rate of 8.87 Mg ha-1, which will provide effective climate change mitigation. This study recommends sustainable management practices for soil carbon sequestration, such as forest protection, fire management, afforestation, the use of organic fertilizers, and soil amendments.
References
Abdulkadir, A., Mohammed, I., & Daudu, C. K. (2021). Organic carbon in tropical soils: Current trends and potential for carbon sequestration in Nigerian cropping systems. In W. Leal Filho et al. (Eds.), Handbook of climate change management (pp. 1–6). Springer. https://doi.org/10.1007/978-3-030-22759-3_307-1
Abdullahi, A. C., Siwar, C., Shaharudin, M. I. I., & Anizan, I. (2018). Carbon sequestration in soils: The opportunities and challenges. IntechOpen. https://doi.org/10.5772/intechopen.79347
Abegaz, A., Ali, A., Tamene, L., Abera, W., & Smith, J. U. (2022). Modeling long-term attainable soil organic carbon sequestration across the highlands of Ethiopia. Environment, Development and Sustainability, 24(5), 5131–5162. https://doi.org/10.1007/s10668-021-01653-0
Abegaz, A., Ali, A., Tamene, L., Abera, W., & Smith, J. U. (2022). Modeling long‐term attainable soil organic carbon sequestration across the highlands of Ethiopia. Environment, Development and Sustainability, 24(5), 5131–5162. https://doi.org/10.1007/s10668‐021‐01653‐0
Adekiya, A. O., Alori, E. T., Ogunbode, T. O., Sangoyomi, T., & Oriade, O. A. (2023). Enhancing organic carbon content in tropical soils: Strategies for sustainable agriculture and climate change mitigation. The Open Agriculture Journal, 17(1), 1–15.
Akpa, S. I. C., Odeh, I. O. A., Bishop, T. F. A., Hartemink, A. E., & Amapu, I. Y. (2016). Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma, 271, 202–215. https://doi.org/10.1016/j.geoderma.2016.02.021
Albaladejo, J., Ortiz, R., Garcia-Franco, N., Navarro, A. R., Almagro, M., Pintado, J. G., & Martínez-Mena, M. (2013). Land use and climate change impact on soil organic carbon stocks in semi-arid Spain. Journal of Soils and Sediments, 13(2), 265–277.
Anikwe, M. A. N. (2010). Carbon storage in soils of southeastern Nigeria under different management practices. Carbon Balance and Management, 5(1), Article 1. https://doi.org/10.1186/1750-0680-5-1
Anokye, J., Logah, V., & Opoku, A. (2021). Soil carbon stock and emission: Estimates from three land-use systems in Ghana. Ecological Processes, 10(1), Article 9. https://doi.org/10.1186/s13717-020-00279-w
Bessah, E., Bala, A., Agodzo, S. K., & Okhimamhe, A. A. (2016). Dynamics of soil organic carbon stocks in the Guinea savanna and transition agro-ecology under different land-use systems in Ghana. Cogent Geoscience, 2(1), Article 1140319. https://doi.org/10.1080/23312041.2016.1140319
Bhardwaj, Y. (2019). Savannah. In J. Vonk & T. Shackelford (Eds.), Encyclopedia of animal cognition and behavior (pp. 1–9). Springer. https://doi.org/10.1007/978-3-319-47829-6_674-1
Castellano, G. R., Santos, L. A., & Menegário, A. A. (2022). Carbon soil storage and technologies to increase soil carbon stocks in the South American savanna. Sustainability, 14(9), Article 5571. https://doi.org/10.3390/su14095571
Ellert, B. H., Janzen, H. H., VandenBygaart, A. J., & Bremer, E. (2008). Measuring change in soil organic carbon storage. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (2nd ed., pp. 25–38). CRC Press.
Food and Agriculture Organization. (2010). Challenges and opportunities for carbon sequestration in grassland systems: A technical report on grassland management and climate change mitigation (Integrated Crop Management Vol. 9). FAO.
Food and Agriculture Organization. (2019). Standard operating procedure for soil organic carbon: Walkley-Black method: Titration and colorimetric method. Global Soil Laboratory Network (GLOSOLAN). https://openknowledge.fao.org/items/efa7ff65-3d95-4b68-ba67-b0aed696b1eb
Food and Agriculture Organization & Intergovernmental Technical Panel on Soils. (2015). Status of the world’s soil resources (SWSR) – Main report. FAO.
Food and Agriculture Organization & Intergovernmental Technical Panel on Soils. (2021). Recarbonizing global soils: A technical manual of recommended management practices: Vol. 3. Cropland, grassland, integrated systems and farming approaches – Practices overview. FAO. https://doi.org/10.4060/cb6595en
Forest Management Evaluation and Co-ordinating Unit. (1994). World Bank/Government of Nigeria Forestry III project: Vol. VI. Environmental assessment, forest management component, Kpashimi Forest Reserve [Final draft].
Gonçalves, D. R. P., Inagaki, T. M., Barioni, L. G., La Scala, N., Cherubin, M. R., De Moraes Sá, J. C., Cerri, C. E. P., & Anselmi, A. (2024). Accessing and modelling soil organic carbon stocks in prairies, savannas, and forests. CATENA, 243, Article 108219. https://doi.org/10.1016/j.catena.2024.108219
Grieco, E., Vangi, E., Chiti, T., & Collalti, A. (2024). Impacts of deforestation and land use/land cover change on carbon stock dynamics in Jomoro District, Ghana. Journal of Environmental Management, 367, Article 121993. https://doi.org/10.1016/j.jenvman.2024.121993
Ibrahim, M. M., & Idoga, S. (2013). Soil degradation assessment of the University of Agriculture Makurdi Students Industrial Work Experience Scheme (SIWES) Farm, Makurdi, Benue State. Production Agriculture and Technology, 9(2), 126–135.
Idrissou, Y., Vall, E., Blanfort, V., Blanchard, M., Traoré, I. A., & Lecomte, P. (2024). Integrated crop-livestock effects on soil carbon sequestration in Benin, West Africa. Heliyon, 10(7), Article e28748. https://doi.org/10.1016/j.heliyon.2024.e28748
Intergovernmental Panel on Climate Change. (2003). Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies.
Intergovernmental Panel on Climate Change. (2014). Summary for policymakers. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Intergovernmental Panel on Climate Change. (2019a). Summary for policymakers. In P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, & J. Malley (Eds.), Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
Intergovernmental Panel on Climate Change. (2019b). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/srccl/
Intergovernmental Panel on Climate Change. (2021). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. (In press).
International Institute of Tropical Agriculture. (1992). Medium term plan 1994–1998. IITA.
Jaiyeoba, I. A., & Essoka, P. E. (2006). Soils and vegetation. In The Middle Niger River Basin: A field course handbook (pp. 43–44). Department of Geography, Ahmadu Bello University.
Janowiak, M., Connelly, W. J., Dante-Wood, K., Domke, G. M., Giardina, C., Kayler, Z., Marcinkowski, K., Ontl, T., Rodriguez-Franco, C., Swanston, C., Woodall, C. W., & Buford, M. (2017). Considering forest and grassland carbon in land management (General Technical Report WO-95). U.S. Department of Agriculture, Forest Service.
Jiba, W., Manyevere, A., & Mashamaite, C. V. (2024). The impact of ecological restoration on soil quality in humid region forest habitats: A systematic review. Forests, 15(11), Article 1941. https://doi.org/10.3390/f15111941
Jibrin, A. (2017). Ecological landscape analysis of savanna woodland area in Niger State, Nigeria. Zaria Geographer, 24(1), 119–131.
Jibrin, A., Jaiyeoba, I. A., Iguisi, E. O., & Oladipo, E. O. (2018). Spatial variation of carbon stock density in Guinea savanna landscape of Niger State, Nigeria. Ife Research Publications in Geography, 16(1), 54–64.
Jorge, F., Mutwale-Mutale, N., Sandhage-Hofmann, A., Braun, M., Cambule, A., Nhantumbo, A., Chabala, L. M., Shepande, C., Chishala, B., Lisboa, S., Matangue, M., Schmidt, M., & Amelung, W. (2025). Anthropogenic disturbances superimpose climate effects on soil organic carbon in savanna woodlands of Sub-Saharan Africa. Global Biogeochemical Cycles, 39(2). https://doi.org/10.1029/2023GB008086
Just, C., Armbruster, M., Barkusky, D., Baumecker, M., Diepolder, M., Döring, T. F., et al. (2023). Soil organic carbon sequestration in agricultural long-term field experiments as derived from particulate and mineral-associated organic matter. Geoderma, 434, Article 116472. https://doi.org/10.1016/j.geoderma.2023.116472
Kadiri, W. O. J., Fasina, A. S., & Babalola, T. S. (2021). Soil organic carbon concentration and stock of arable land use of two agro-ecological zones of Nigeria. Journal of the Saudi Society of Agricultural Sciences, 20(3), 180–189. https://doi.org/10.1016/j.jssas.2021.01.004
Kadiri, W., Ogunleye, K., Fasina, A., & Babalola, T. (2023). Soil properties affecting soil organic carbon stock of different land use types in two agro-ecological zones of Nigeria. Agro-Science, 21(3), 37–48. https://doi.org/10.4314/as.v21i3.5
Keay, R. W. J. (1953). An outline of Nigerian vegetation (2nd ed.). Government Printer.
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627.
Lal, R. (2015). Soil carbon sequestration and aggregation by cover cropping. Journal of Soil and Water Conservation, 70(6), 329–339. https://doi.org/10.2489/jswc.70.6.329
Lawrence, G. B., Fernandez, I. J., Hazlett, P. W., Bailey, S. W., Ross, D. S., Villars, T. R., Quintana, A., Ouimet, R., McHale, M. R., Johnson, C. E., Briggs, R. D., Colter, R. A., Siemion, J., Bartlett, O. L., Vargas, O., Antidormi, M. R., & Koppers, M. M. (2016). Methods of soil resampling to monitor changes in the chemical concentrations of forest soils. Journal of Visualized Experiments, (117), Article 54815. https://doi.org/10.3791/54815
Mesele, S. A., & Huising, J. (2024). Soil organic carbon and nutrient characteristics of Anogeissus groves in old Opara forest reserve, Nigeria. Environmental Monitoring and Assessment, 196(5), Article 490. https://doi.org/10.1007/s10661-024-12636-9
Ndor, E., & Iorkua, R. S. (2013). Effect of agricultural land use on carbon sequestration and chemical properties of soil in Lafia, Southern Guinea Savanna Agroecological Zone, Nigeria. Global Journal of Biodiversity Science and Management, 3(1), 68–72.
Nigerian Meteorological Agency. (2023). 2022 state of the climate in Nigeria. Federal Ministry of Aviation.
Nikodemus, A., Hájek, M., Ndeinoma, A., & Purwestri, R. C. (2022). Forest ecosystem services-based adaptation actions supported by the national policy on climate change for Namibia: Effectiveness, indicators, and challenges. Forests, 13(11), Article 1965. https://doi.org/10.3390/f13111965
Nwabueze, I. I., Chinero, N. A., & Ngozi, V. O. (2021). Soil carbon dynamics in a humid tropical zone in SE Nigeria: Environmental influences and conservation prioritization. Journal of Geography and Regional Planning, 14(1), 19–31. https://doi.org/10.5897/jgrp2020.0799
Nwaogu, C., Okeke, O. J., Fashae, O., & Nwankwoala, H. (2018). Soil organic carbon and total nitrogen stocks as affected by different land use in an Ultisol in Imo Watershed, southern Nigeria. Chemistry and Ecology, 34(9), 854–870. https://doi.org/10.1080/02757540.2018.1508461
Obalum, S. E., Watanabe, Y., Igwe, C. A., Obi, M. E., & Wakatsuki, T. (2012). Carbon stock in the solum of some coarse-textured soils under secondary forest, grassland fallow, and bare footpath in the derived savanna of south-eastern Nigeria. Soil Research, 50(2), 157–166.
Odebiri, O., Mutanga, O., Odindi, J., Slotow, R., Mafongoya, P., Lottering, R., Naicker, R., Matongera, T. N., & Mngadi, M. (2024). Remote sensing of depth-induced variations in soil organic carbon stocks distribution within different vegetated landscapes. CATENA, 243, Article 108216. https://doi.org/10.1016/j.catena.2024.108216
Odunze, A. C., Yusuf, D. M., & Abdulkadir, A. (2017). Soil organic carbon concentrations and stocks under maize/legume cropping system in Alfisols of a savanna zone, Nigeria. Current Journal of Applied Science and Technology, 1–12. https://doi.org/10.9734/BJAST/2017/32538
Okiemute, E. A. (2025). An appraisal of soil organic carbon content availability under diverse vegetation cover in Delta State, southern Nigeria. Transpublika International Research in Exact Sciences, 4(2), 87–93. https://doi.org/10.55047/tires.v4i2.1687
Olson, K. R. (2013). Soil organic carbon sequestration, storage, retention, and loss in U.S. croplands: Issues paper for protocol development. Geoderma, 195–196, 201–206.
Omotoso, A. B., & Omotayo, A. O. (2024). The interplay between agriculture, greenhouse gases, and climate change in Sub-Saharan Africa. Regional Environmental Change, 24(1), Article 13.
Onyegbule, U. N., Onwudike, S. U., Opara-Nadi, N., & Opara-Nadi, O. (2023). Soil fertility evaluation and land-use effects on soil properties, carbon and nitrogen sequestration in the rainforest of Nigeria. Eurasian Journal of Soil Science, 12(4), 310–319. https://doi.org/10.18393/ejss.1327155
Ota, H. O., Mohan, K., Udume, B. U., Olim, D. M., & Okolo, C. C. (2024). Assessment of land use management and its effect on soil quality and carbon stock in Ebonyi State, Southeast Nigeria. Journal of Environmental Management, 358, Article 120889. https://doi.org/10.1016/j.jenvman.2024.120889
Pham, T. G., Nguyen, H. T., & Kappas, M. (2018). Assessment of soil quality indicators under different agricultural land uses and topographic aspects in Central Vietnam. International Soil and Water Conservation Research, 6(4), 280–288.
Poeplau, C., & Don, A. (2013). Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma, 192, 189–201.
Rodrigues, C., Brito, L., & Nunes, L. (2023). Soil carbon sequestration in the context of climate change mitigation: A review. Soil Systems, 7(3), Article 64. https://doi.org/10.3390/soilsystems7030064
Shuaib, M. B., Sauwa, M. M., Musah, M., Onele, E. J., Abdulkareem, Y. J., & Akanbi, E. O. (2025). Quantifying soil carbon stocks and sequestration rate under tree canopy litter in Sudan savannah. Asian Journal of Research in Agriculture and Forestry, 11(3), 36–45. https://doi.org/10.9734/ajraf/2025/v11i3409
Singh, S., Kiran, B. R., & Mohan, S. V. (2024). Carbon farming: A circular framework to augment CO₂ sinks and to combat climate change. Environmental Science: Advances, 3(4), 522–542.
Smith, P. (2012). Soils and climate change. Current Opinion in Environmental Sustainability, 4(5), 539–544.
Tao, H., & Rogers, C. W. (2019). Understanding and measuring organic matter in soil (pp. 1–17). Washington State University Libraries. https://research.wsulibs.wsu.edu/xmlui/handle/2376/16874
Tegha, K. C., & Sendze, Y. G. (2016). Soil organic carbon stocks in Mount Cameroon National Park under different land uses. Journal of Ecology and the Natural Environment, 8(3), 20–30. https://doi.org/10.5897/JENE2015.0553
Traoré, S., Thiombiano, L., Bationo, B. A., Kögel-Knabner, I., & Wiesmeier, M. (2020). Organic carbon fractional distribution and saturation in tropical soils of West African savannas with contrasting mineral composition. CATENA, 190, Article 104550. https://doi.org/10.1016/j.catena.2020.104550
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.
Zhang, P., & Shao, M. (2014). Spatial variability and stocks of soil organic carbon in the Gobi desert of Northwestern China. PLoS ONE, 9(4), Article e93584. https://doi.org/10.1371/journal.pone.0093584
Zhou, Y., Bomfim, B., Bond, W. J., Boutton, T. W., Case, M. F., Coetsee, C., Davies, A. B., February, E. C., Gray, E. F., Silva, L. C. R., Wright, J. L., & Staver, A. C. (2023). Soil carbon in tropical savannas mostly derived from grasses. Nature Geoscience, 16(8), 710–716. https://doi.org/10.1038/s41561-023-01232-0
Downloads
Published
Data Availability Statement
Data not made available
Issue
Section
Categories
License
Copyright (c) 2025 Abdullahi Jibrin, Mukhtar Ibrahim, Hamza Muhammad, Liman Alhaji Saba (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.